Simulation of the Winter Meso-Scale Wind and Tidal Circulation in the Gulf of Patras (Greece)

Author(s):  
Nikolaos Th. Fourniotis ◽  
Georgios M. Horsch

The Gulf of Patras is a shallow embayment (of 80 m mean depth), in western Greece, leading to the Ionian Sea on the west, and, through the straits of Rio-Antirio, to the Gulf of Corinth, on the east. In the present study, the three-dimensional modelling system [1] was applied to investigate the tide- and wind-driven circulation in the complex bathymetry of the natural basin of the Gulf of Patras. Numerical simulations have been conducted for different scenarios for wind speed and direction, and the results of the circulation forced by a uniform wind stress corresponding to a wind speed of 4 m/s and two different directions are reported. In addition, tidal records measured at both ends of the Gulf were used as forcing in order to simulate the tidal circulation. The numerical study corroborated that the tidal currents at the Rio-Antirio straits are stronger than those induced by the mean wind and are among the strongest tidal currents to be found in Greek waters. Comparisons between the three-dimensional model predictions and available field measurements have shown reasonable agreement both qualitatively and quantitatively.

2021 ◽  
Author(s):  
Daria Gladskikh ◽  
Evgeny Mortikov ◽  
Victor Stepanenko

<p>The study of thermodynamic and biochemical processes of inland water objects using one- and three-dimensional RANS numerical models was carried out both for idealized water bodies and using measurements data. The need to take into account seiche oscillations to correctly reproduce the deepening of the upper mixed layer in one-dimensional (vertical) models is demonstrated. We considered the one-dimensional LAKE model [1] and the three-dimensional model [2, 3, 4] developed at the Research Computing Center of Moscow State University on the basis of a hydrodynamic code combining DNS/LES/RANS approaches for calculating geophysical turbulent flows. The three-dimensional model was supplemented by the equations for calculating biochemical substances by analogy with the one-dimensional biochemistry equations used in the LAKE model. The effect of mixing processes on the distribution of concentration of greenhouse gases, in particular, methane and oxygen, was studied.</p><p>The work was supported by grants of the RF President’s Grant for Young Scientists (MK-1867.2020.5, MD-1850.2020.5) and by the RFBR (19-05-00249, 20-05-00776). </p><p>1. Stepanenko V., Mammarella I., Ojala A., Miettinen H., Lykosov V., Timo V. LAKE 2.0: a model for temperature, methane, carbon dioxide and oxygen dynamics in lakes // Geoscientific Model Development. 2016. V. 9(5). P. 1977–2006.<br>2. Mortikov E.V., Glazunov A.V., Lykosov V.N. Numerical study of plane Couette flow: turbulence statistics and the structure of pressure-strain correlations // Russian Journal of Numerical Analysis and Mathematical Modelling. 2019. 34(2). P. 119-132.<br>3. Mortikov, E.V. Numerical simulation of the motion of an ice keel in stratified flow // Izv. Atmos. Ocean. Phys. 2016. V. 52. P. 108-115.<br>4. Gladskikh D.S., Stepanenko V.M., Mortikov E.V. On the influence of the horizontal dimensions of inland waters on the thickness of the upper mixed layer // Water Resourses. 2021.V. 45, 9 pages. (in press) </p>


1992 ◽  
Vol 3 (2) ◽  
pp. 133-147
Author(s):  
M.M. Elkotb ◽  
O.M.F. Elbahar ◽  
T.A. Abdou Ahmed ◽  
T.W. Abou-Arab

A mathematical model for the prediction of pollutant emissions from motor vehicles is presented. The model is based on the numerical solution of the three-dimensional equation representing the mass conservation of dilute diffusing species. The variation of wind speed and eddy diffusivity with height is taken into consideration. The three-dimensional diffusion equation is solved numerically. The numerical procedure involves the discretization of the partial differential equation using the finite volume approach. The resulting set of discretization equation is solved iteratively using a fully implicit solution procedure. Furthermore, field measurements of the concentrations of nitrogen oxide in the downtown area of Cairo were conducted. For this purpose, a mobile air pollution laboratory fitted with gas analyzers, particulate matter sampler and equipment for the measurement of wind speed and direction has been used. This laboratory is also fitted with data recording and monitoring facility. The mathematical model is tested by comparing the computed pollutant concentrations with the experimental data obtained from the field measurements in the Cairo Metropolitan Area.


2019 ◽  
Vol 7 (10) ◽  
pp. 337 ◽  
Author(s):  
Francesco Gallerano ◽  
Giovanni Cannata ◽  
Federica Palleschi

A three-dimensional numerical study of the hydrodynamic effect produced by a system of submerged breakwaters in a coastal area with a curvilinear shoreline is proposed. The three-dimensional model is based on an integral contravariant formulation of the Navier-Stokes equations in a time-dependent curvilinear coordinate system. The integral form of the contravariant Navier-Stokes equations is numerically integrated by a finite-volume shock-capturing scheme which uses Monotonic Upwind Scheme for Conservation Laws Total Variation Diminishing (MUSCL-TVD) reconstructions and an Harten Lax van Leer Riemann solver (HLL Riemann solver). The numerical model is used to verify whether the presence of a submerged coastal defence structure, in the coastal area with a curvilinear shoreline, is able to modify the wave induced circulation pattern and the hydrodynamic conditions from erosive to accretive.


2020 ◽  
Author(s):  
Daria Gladskikh ◽  
Evgeny Mortikov ◽  
Victor Stepanenko

<p>Currently, one-dimensional and three-dimensional models are widely used to model thermohydrodynamic and biochemical processes in lakes and water rеreservoirs. One-dimensional models are highly computationally efficient and are used to parameterize land water bodies in climate models, however, when calculating large lakes and reservoirs with complex geometry, such models may incorrectly reproduce processes associated with horizontal heterogeneity. This becomes especially important for the prediction of water quality and euthrophication.</p><p>A three-dimensional model of thermohydrodynamics and biochemistry of an inland water obect is presented, which is based on the hydrostatic RANS model [1-3], and the parameterization of biochemical processes is implemented by analogy with the scheme for calculating biochemistry in the one-dimensional LAKE model [4]. Thus, the three-dimensional model is supplemented by a description of the transport of substances such as oxygen (O<sub>2</sub>), carbon dioxide (CO<sub>2</sub>), methane (CH<sub>4</sub>), as well as phyto- and zooplankton. The effect of turbulent diffusion and large-scale water movements on the distribution of a methane concentration field is studied.</p><p>To verify the calculation results, idealized numerical experiments and comparison with the measurement data on Lake Kuivajärvi (Finland) were used.</p><p>The work was supported by grants of the RF President’s Grant for Young Scientists (MK-1867.2020.5, MD-1850.2020.5) and by the RFBR (18-05-00292, 18-35-00602, 20-05-00776). <br><br>References:<br>[1] Mortikov E.V. Numerical simulation of the motion of an ice keel in stratified flow // Izv. Atmos. Ocean. Phys. 2016. 52. P. 108-115.<br>[2] Mortikov E.V., Glazunov A.V., Lykosov V.N. Numerical study of plane Couette flow: turbulence statistics and the structure of pressure-strain correlations // Russian Journal of Numerical Analysis and Mathematical Modelling. 2019. V. 34, N 2. P. 119-132.<br>[3] D.S. Gladskikh, V.M. Stepanenko, E.V. Mortikov, On the influence of the horizontal dimensions of inland waters on the thickness of the upper mixed layer. // Water Resourses. 2019. 18 pages. (submitted)<br>[4] Victor Stepanenko, Ivan Mammarella, Anne Ojala, Heli Miettinen, Vasily Lykosov, and Vesala Timo. LAKE 2.0: a model for temperature, methane, carbon dioxide and oxygen dynamics in lakes. Geoscientific Model Development, 9(5): 1977–2006, 2016.</p>


2012 ◽  
Vol 47 (3-4) ◽  
pp. 238-251 ◽  
Author(s):  
Jun Zhao ◽  
Yerubandi R. Rao ◽  
Jinyu Sheng

A nested-grid hydrodynamic modeling system is used to examine the circulation and dispersion in Lake Huron and adjacent areas with specific attention to physical parameters pertinent to the estimation of hydrodynamic connectivity of near-surface waters. The nested system is forced by monthly mean surface heat flux and 12-hourly wind stress computed from wind speeds extracted from the National Centers for Environmental Prediction of the National Center for Atmospheric Research (NCEP/NCAR) 40-year reanalysis data. The three-dimensional model currents are used to calculate the retention and dispersion of conservative, near-surface particles carried by the currents. The near-surface dispersion is relatively low in Saginaw Bay, eastern Georgian Bay and the eastern North Channel; and relatively high over the western part of the main lake and the coastal region of south Lake Huron. The hydrodynamic connectivity in the surface water and connectivity matrices are calculated from particle movements carried passively by model currents superposed by a random walk process. The model results demonstrate that the hydrodynamic connectivity in the North Channel and Georgian Bay (ranging from 0.9 to 2.2%) is much weaker than those in the main lake (5.3 to 21.9%).


2005 ◽  
Author(s):  
Linjiang Zou ◽  
Chaoxiang Li ◽  
Yinmei Yuan ◽  
Wei Guo ◽  
Fan Yang ◽  
...  

In the present work, a commercial CFD software package, FLUENT, was used to develop a three-dimensional model of pusher-type billet reheating furnace for the second high speed wire rod plant of XiangTan Iron and steel Co. Ltd. The purpose of the study was to gain a better understanding of the gas flow and velocity and pressure distribution in the furnace. The results show that the numerical results are in agreement with the practice and the characteristics of the furnace configuration. The CFD model can be used to improve the performance and structure by analyzing and studying the behavior of the reheating furnace.


2008 ◽  
Vol 15 (01n02) ◽  
pp. 111-116 ◽  
Author(s):  
JAE-SANG BAEK ◽  
JIN-HYO BOO ◽  
YOUN-JEA KIM

A numerical study is needed to gain insight into the growth mechanism and improve the reactor design or optimize the deposition condition in chemical vapor deposition (CVD). In this study, we have performed a numerical analysis of the deposition of gallium arsenide ( GaAs ) from trimethyl gallium (TMG) and arsine in a vertical CVD reactor. The effects of operating parameters, such as the rotation velocity of susceptor, inlet velocity, and inlet TMG fraction, are investigated and presented. The three-dimensional model which is used in this investigation includes complete coupling between the thermal-fluid transport and species transport with chemical reaction.


Author(s):  
Jiang Yao ◽  
Art D. Salo ◽  
Monica Barbu-McInnis ◽  
Amy L. Lerner

A finite element model of the knee joint could be helpful in providing insight on mechanisms of injury, effects of treatment, and the role of mechanical factors in degenerative conditions. However, preparation of such a model involves many geometric simplifications and input of material properties, some of which are poorly understood. Therefore, a method to compare model predictions to actual behaviors under controlled conditions could provide confidence in the model before exploration of other loading scenarios. Our laboratory has developed a method to apply axial loads to the in vivo human knee during magnetic resonance imaging, resembling weightbearing conditions. Image processing algorithms may then be used to assess the three-dimensional kinematics of the tibia and femur during loading. A three-dimensional model of the tibio-menisco-femoral contact has been generated and the image-based kinematic boundary conditions were applied to investigate the distribution of stresses and strains in the articular cartilage and menisci throughout the loading period. In this study, our goal is to investigate the contact patterns during long term loading of up to twenty minutes in the healthy knee. Specifically, we assess the use of both elastic and poroelastic material properties in the cartilage, and compare model predictions to known loading conditions and images of tissue deformations.


2001 ◽  
Vol 58 (4) ◽  
pp. 723-735 ◽  
Author(s):  
Youyu Lu ◽  
Keith R Thompson ◽  
Daniel G Wright

Tidal heights from 19 tide gauges around the Gulf of St. Lawrence are assimilated into a fully nonlinear, three-dimensional model using the incremental approach to data assimilation. The predicted sea level fields are realistic and agree with the assimilated tidal heights to within about 0.05 m at the M2 tidal frequency. The model also predicts tidal currents with useful skill. The prediction error at the M2 tidal frequency is typically less than 0.05 m·s–1. The maps of predicted tidal currents are used to identify regions of mixed and stratified water in the Gulf of St. Lawrence using a version of the Simpson–Hunter stability parameter, E. Overall, the map of E is in good agreement with a direct measure of water column stability based on observed density profiles.


Sign in / Sign up

Export Citation Format

Share Document