Experimental Studies and Numerical Modeling of Copper Nets in Marine Environment

Author(s):  
Igor Tsukrov ◽  
Andrew Drach ◽  
Judson DeCew ◽  
M. Robinson Swift ◽  
Barbaros Celikkol ◽  
...  

Copper alloy netting is increasingly used for offshore aquaculture, harbor protection and other marine applications. Its advantageous characteristics include high resistance to biofouling and increased strength compared to polymer nets. However, the hydrodynamic properties of copper nets are not well studied. In this paper, the results of experimental studies of drag forces on copper alloy net panels are reported. Based on these studies, empirical values for drag coefficients are proposed for various types of copper nets, and compared to the corresponding data for polymer netting. It is shown that copper nets exhibit significantly lower resistance to the current flow which corresponds to lower values of drag coefficient. Coefficients obtained from the experiments are incorporated into the finite element program Aqua-FE, developed at the University of New Hampshire for analysis of flexible structures subjected to waves and currents in marine environment. The results of the numerical simulations for a small volume fish cage, subjected to two different sets of environmental conditions, are analyzed to compare how introduction of copper netting instead of traditional nylon nets affects the dynamic response of the system.

Author(s):  
S Syngellakis ◽  
M A Arnold ◽  
H Rassoulian

The stiffness characteristics of plastic ankle foot orthoses (AFOs) are studied through finite element modelling and stress analysis. Particular attention is given to the modelling and prediction of non-linear AFO behaviour, which has been frequently observed in previous experimental studies but not fully addressed analytically. Both large deformation effects and material non-linearity are included in the formulation and their individual influence on results assessed. The finite element program is subsequently applied to the simulation of a series of tests designed to investigate the relation between AFO trimline location and stiffness for moderate and large rotations. Through careful consideration and identification of key modelling parameters, the developed finite element solution proves to be a reliable and effective alternative means of assessing variations of a typical plastic AFO design so that particular patient requirements could be met, in the long term.


Author(s):  
Xinxin Wang ◽  
Fenfang Zhao ◽  
Yanli Tang ◽  
Liuyi Huang ◽  
Rong Wan ◽  
...  

To study the hydrodynamic characteristics of the submersible mussel raft in waves and currents, the numerical model of the submersible raft was established based on the finite element method and kinematics theory. The finite element program Aqua-FE™ was applied to simulate the impacts of waves and currents on the hydrodynamic responses of the surface and submerged rafts, respectively. Morison Equation was applied to compute the tension of the mooring lines. Apart from the wave condition, the flow has a significant effect on the mooring line tension of the submersible raft. The submerged raft is useful for reducing the mooring loads. The submergence depth of the mussel raft can be adjusted depending on the marine environment. The results show that the submerged raft wave response was found to be reduced relative to the surface raft. The vertical motion of mussel rope connection points was significantly reduced by submergence, resulting in reduced potential for mussel drop-off. Compared the performance of the submerged raft in the same condition, the motion amplitude of the framework of the raft decreased significantly while increasing the submergence depth. At the same period, the trend of the decrease followed by levelling off with an increasing wave height. However, the submergence depth had no significant effect on the mooring line tension.


2006 ◽  
Vol 113 ◽  
pp. 334-338
Author(s):  
Z. Dreija ◽  
O. Liniņš ◽  
Fr. Sudnieks ◽  
N. Mozga

The present work deals with the computation of surface stresses and deformation in the presence of friction. The evaluation of the elastic-plastic contact is analyzed revealing three distinct stages that range from fully elastic through elastic-plastic to fully plastic contact interface. Several factors of sliding friction model are discussed: surface roughness, mechanical properties and contact load and areas that have strong effect on the friction force. The critical interference that marks the transition from elastic to elastic- plastic and plastic deformation is found out and its connection with plasticity index. A finite element program for determination contact analysis of the assembled details and due to details of deformation that arose a normal and tangencial stress is used.


2021 ◽  
Vol 37 ◽  
pp. 205-215
Author(s):  
Heng Chen ◽  
Hongmei Cheng ◽  
Aibin Xu ◽  
Yi Xue ◽  
Weihong Peng

ABSTRACT The fracture field of coal and rock mass is the main channel for gas migration and accumulation. Exploring the evolution law of fracture field of coal and rock mass under the condition of drilling and slitting construction has important theoretical significance for guiding efficient gas drainage. The generation and evolution process of coal and rock fissures is also the development and accumulation process of its damage. Therefore, based on damage mechanics and finite element theory, the mathematical model is established. The damage variable of coal mass is defined by effective strain, the elastoplastic damage constitutive equation is established and the secondary development of finite element program is completed by FORTRAN language. Using this program, the numerical simulation of drilling and slitting construction of the 15-14120 mining face of Pingdingshan No. 8 Mine is carried out, and the effects of different single borehole diameters, different kerf widths and different kerf heights on the distribution area of surrounding coal fracture field and the degree of damage are studied quantitatively. These provide a theoretical basis for the reasonable determination of the slitting and drilling arrangement parameters at the engineering site.


2013 ◽  
Vol 631-632 ◽  
pp. 518-523 ◽  
Author(s):  
Xiang Li ◽  
Min You

Owing to the lack of a good theory method to obtain the accurate equivalent elastic constants of hexagon honeycomb sandwich structure’s core, the paper analyzed mechanics performance of honeycomb sandwich structure’s core and deduced equivalent elastic constants of hexagon honeycomb sandwich structure’s core considering the wall plate expansion deformation’s effect of hexagonal cell. And also a typical satellite sandwich structure was chose as an application to analyze. The commercial finite element program ANSYS was employed to evaluate the mechanics property of hexagon honeycomb core. Numerical simulation analysis and theoretical calculation results show the formulas of equivalent elastic constants is correct and also research results of the paper provide theory basis for satellite cellular sandwich structure optimization design.


2014 ◽  
Vol 501-504 ◽  
pp. 731-735
Author(s):  
Li Zhang ◽  
Kang Li

This paper analyzes the influence degree of related design parameters of wire-mesh frame wallboard on deformation through finite element program, providing theoretical basis for the design and test of steel wire rack energy-saving wallboard.


2009 ◽  
Vol 65 ◽  
pp. 19-31
Author(s):  
Ruben Cuamatzi-Melendez ◽  
J.R. Yates

Little work has been published concerning the transferability of Gurson’s ductile damage model parameters in specimens tested at different strain rates and in the rolling direction of a Grade A ship plate steel. In order to investigate the transferability of the damage model parameters of Gurson’s model, tensile specimens with different constraint level and impact Charpy specimens were simulated to investigate the effect of the strain rate on the damage model parameters of Gurson model. The simulations were performed with the finite element program ABAQUS Explicit [1]. ABAQUS Explicit is ideally suited for the solution of complex nonlinear dynamic and quasi–static problems [2], especially those involving impact and other highly discontinuous events. ABAQUS Explicit supports not only stress–displacement analyses but also fully coupled transient dynamic temperature, displacement, acoustic and coupled acoustic–structural analyses. This makes the program very suitable for modelling fracture initiation and propagation. In ABAQUS Explicit, the element deletion technique is provided, so the damaged or dead elements are removed from the analysis once the failure criterion is locally reached. This simulates crack growth through the microstructure. It was found that the variation of the strain rate affects slightly the value of the damage model parameters of Gurson model.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Muhammad Auchar Zardari ◽  
Hans Mattsson ◽  
Sven Knutsson ◽  
Muhammad Shehzad Khalid ◽  
Maria V. S. Ask ◽  
...  

Much of the seismic activity of northern Sweden consists of micro-earthquakes occurring near postglacial faults. However, larger magnitude earthquakes do occur in Sweden, and earthquake statistics indicate that a magnitude 5 event is likely to occur once every century. This paper presents dynamic analyses of the effects of larger earthquakes on an upstream tailings dam at the Aitik copper mine in northern Sweden. The analyses were performed to evaluate the potential for liquefaction and to assess stability of the dam under two specific earthquakes: a commonly occurring magnitude 3.6 event and a more extreme earthquake of magnitude 5.8. The dynamic analyses were carried out with the finite element program PLAXIS using a recently implemented constitutive model called UBCSAND. The results indicate that the magnitude 5.8 earthquake would likely induce liquefaction in a limited zone located below the ground surface near the embankment dikes. It is interpreted that stability of the dam may not be affected due to the limited extent of the liquefied zone. Both types of earthquakes are predicted to induce tolerable magnitudes of displacements. The results of the postseismic slope stability analysis, performed for a state after a seismic event, suggest that the dam is stable during both the earthquakes.


Sign in / Sign up

Export Citation Format

Share Document