Numerical Analysis of Submersible Mussel Raft for Exposed Marine Environment

Author(s):  
Xinxin Wang ◽  
Fenfang Zhao ◽  
Yanli Tang ◽  
Liuyi Huang ◽  
Rong Wan ◽  
...  

To study the hydrodynamic characteristics of the submersible mussel raft in waves and currents, the numerical model of the submersible raft was established based on the finite element method and kinematics theory. The finite element program Aqua-FE™ was applied to simulate the impacts of waves and currents on the hydrodynamic responses of the surface and submerged rafts, respectively. Morison Equation was applied to compute the tension of the mooring lines. Apart from the wave condition, the flow has a significant effect on the mooring line tension of the submersible raft. The submerged raft is useful for reducing the mooring loads. The submergence depth of the mussel raft can be adjusted depending on the marine environment. The results show that the submerged raft wave response was found to be reduced relative to the surface raft. The vertical motion of mussel rope connection points was significantly reduced by submergence, resulting in reduced potential for mussel drop-off. Compared the performance of the submerged raft in the same condition, the motion amplitude of the framework of the raft decreased significantly while increasing the submergence depth. At the same period, the trend of the decrease followed by levelling off with an increasing wave height. However, the submergence depth had no significant effect on the mooring line tension.

2020 ◽  
Author(s):  
Tzu-Ching Chuang ◽  
Wen-Hsuan Yang ◽  
Yi-Hong Chen ◽  
Ray-Yeng Yang

<p><span>In this paper, the commercial software Orcaflex is used to simulate the motion behavior of the OC4 floating platform, and the floater stability and mooring line tension after the mooring system failure. In the time domain analysis, the discussion is divided into three phases—the first phase (before the tether failure), the second phase (before the tether failure, before reaching the new steady-state), and the third phase (after reaching the new steady-state). The motion characteristics and tension values at different stages were observed. In this study, only a 50-year return period wave condition is used as an input condition and simulating 11 different incident wind and wave directions. The numerical results are presented in the trajectory map and the table. About the tension of the mooring line, after the mooring system fails, it is notable that the mooring line tension will first decrease and then increase slightly above the initial tension value. In other words, the mooring system may survive after the failure of one mooring line and got a new balance of it. However, the tension amplitude will be higher than the first stage in the new balance and it will likely increase the risk of mooring line fatigue.</span></p>


2021 ◽  
Vol 9 (9) ◽  
pp. 960
Author(s):  
Chun Bao Li ◽  
Mingsheng Chen ◽  
Joonmo Choung

It is essential to design a reasonable mooring line length that ensures quasi-static responses of moored floating structures are within an acceptable level, and that reduces the cost of mooring lines in the overall project. Quasi-static responses include the equilibrium position and the line tension of a moored floating structure (also called the mean value in a dynamic response), etc. The quasi-static responses derived by the classic catenary equation cannot present mooring–seabed interaction and hydrodynamic effects on a mooring line. While a commercial program can predict reasonable quasi-static responses, costly modeling is required. This motivated us to propose a new method for predicting quasi-static responses that minimizes the mechanical energy of the whole system based on basic geometric parameters, and that is easy to implement. In this study, the mechanical energy of moored floating structures is assumed to be the sum of gravitational–buoyancy potential energy, kinetic energy induced by drag forces, and spring potential energy derived by line tension. We introduce fundamental theoretical background for the development of the proposed method. We investigate the effect of quasi-static actions on mooring response, comparing the proposed method’s results with those from the catenary equation and ABAQUS software. The study reveals the shortcomings of the catenary equation in offshore applications. We also compare quasi-static responses derived by the AQWA numerical package with the results calculated from the proposed method for an 8 MW WindFloat 2 type of platform. Good agreement was drawn between the proposed method and AQWA. The proposed method proves more timesaving than AQWA in terms of modeling of mooring lines and floaters, and more accurate than the catenary equation, and can be used effectively in the early design phase of dimension mooring lengths for moored floating structures.


2020 ◽  
Vol 8 (2) ◽  
pp. 82
Author(s):  
Hui Yang ◽  
Yun-Peng Zhao ◽  
Chun-Wei Bi ◽  
Yong Cui

Enclosure aquaculture is a healthy and ecological aquaculture pattern developed in recent years to relieve the pressure due to the wild fish stock decline and water pollution. The object of this paper was a floating rope enclosure, which mainly consisted of floaters, mooring lines, sinkers and a net. In order to optimize mooring design factors, the hydrodynamic responses of the floating rope enclosure with different mooring systems in combined wave-current were investigated by experimental and numerical methods. Physical model experiments with a model scale of 1:50 were performed to investigate the hydrodynamic characteristics of a floating rope enclosure with 12 mooring lines. Based on the lumped mass method, the numerical model was established to investigate the effects of mooring design factors on the mooring line tension, force acting on the bottom, and the volume retention of the floating rope enclosure. Through the analysis of numerical and experimental results, it was found that the maximum mooring line tension of the floating rope enclosure occurs on both sides of the windward. Increasing the number of mooring lines on the windward side is helpful to reduce the maximum mooring line tension. Waves and current both have an influence on the mooring line tension; in contrast, currents have a more obvious effect on the mooring line tension than waves. However, the influence of the wave period on the maximum mooring line tension is small. The force endured by the bottom of the floating rope enclosure also changes periodically with the wave period. Yet, the maximum force endured by the bottom of floating rope enclosure occurred at the windward and leeward of the structure. The volume retention of the floating rope enclosure increased with the increasing amount of mooring lines.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Yuanhui Wang ◽  
Chuntai Zou ◽  
Fuguang Ding ◽  
Xianghui Dou ◽  
Yanqin Ma ◽  
...  

FPSO is widely used during the deep-sea oil and gas exploration operations, for which it is an effective way to keep their position by means of positioning mooring (PM) technology to ensure the long-term reliability of operations, even in extreme seas. Here, a kind of dynamic positioning (DP) controller in terms of structural reliability is presented for the single-point turret-moored FPSOs. Firstly, the mathematical model of the moored FPSO in terms of kinematics and dynamics is established. Secondly, the catenary method is applied to analyze the mooring line dynamics, and mathematical model of one single mooring line is set up based on the catenary equation. Thereafter, mathematical model for the whole turret mooring system is established. Thirdly, a structural reliability index is defined to evaluate the breaking strength of each mooring line. At the same time, control constraints are also considered to design a state feedback controller using the backstepping technique. Finally, a series of simulation tests are carried out for a certain turret-moored FPSO with eight mooring lines. It is shown in the simulation results that the moored FPSO can keep its position well in extreme seas. Besides, the FPSO mooring line tension is reduced effectively to ensure mooring lines safety to a large extent in harsh sea environment.


Author(s):  
Igor Tsukrov ◽  
Andrew Drach ◽  
Judson DeCew ◽  
M. Robinson Swift ◽  
Barbaros Celikkol ◽  
...  

Copper alloy netting is increasingly used for offshore aquaculture, harbor protection and other marine applications. Its advantageous characteristics include high resistance to biofouling and increased strength compared to polymer nets. However, the hydrodynamic properties of copper nets are not well studied. In this paper, the results of experimental studies of drag forces on copper alloy net panels are reported. Based on these studies, empirical values for drag coefficients are proposed for various types of copper nets, and compared to the corresponding data for polymer netting. It is shown that copper nets exhibit significantly lower resistance to the current flow which corresponds to lower values of drag coefficient. Coefficients obtained from the experiments are incorporated into the finite element program Aqua-FE, developed at the University of New Hampshire for analysis of flexible structures subjected to waves and currents in marine environment. The results of the numerical simulations for a small volume fish cage, subjected to two different sets of environmental conditions, are analyzed to compare how introduction of copper netting instead of traditional nylon nets affects the dynamic response of the system.


Author(s):  
Yuan Hongtao ◽  
Zeng Ji ◽  
Chen Gang ◽  
Mo Jian ◽  
Zhao Nan

This paper applies 3D potential theory and non-linear time domain coupled analysis method to analyze motion response of FPSO and dynamic response of mooring line of single mooring system. In addition, respectively to calculate mooring line tension of tension type and composite mooring line type and added buoy in mooring line. There the paper analyze different mooring lines to affect on the weight of single point mooring system of deepwater FPSO. Which expects to provide a theoretical basis for single point mooring system design and weight control.


Author(s):  
P. Chen ◽  
S. Chai ◽  
J. Ma

In order to investigate the effect of taut-wire mooring system on the motion performance of semi-submersible platforms, parametric studies of coupled motion responses are conducted using a time domain analysis in this study. The nonlinear dynamic characteristics of mooring lines and the interactions of platform and mooring lines are investigated. The parametric studies consist of investigating the effects of the hydrodynamic coefficients CA and CD of mooring line, tension dip angle, mooring line pretension, different taut-mooring arrangements and total number of mooring lines on the motion performance of a semi-submersible platform in water depth of 1500 meters, which is subjected to a 100 year return significant wave height of 13.3 meters, a peak period of 15.5 seconds, a current speed of 1.97 meters per second and wind speed of 55 meters per second. The wind and current both act in the same direction as the ocean waves in this study in order to estimate the maximum mooring line loads. The environmental load direction is varied from 0° to 90° at the interval of 15 degrees. Seven directions are calculated in total. The research results show that the different parameters, such as the hydrodynamic coefficients of the mooring line, tension dip angle, pre-tension, arrangement angle of mooring lines and total number of mooring lines, have different effects on the coupled motion responses. In particular, the arrangement angles of mooring lines have significant effect on motion responses and dynamic loads of mooring lines. The motion performance of semi-submersible platform and mooring line dynamic loads can be controlled effectively when these parameters are selected reasonably throughout parametric studies carefully designed and conducted.


2014 ◽  
Vol 580-583 ◽  
pp. 2124-2128
Author(s):  
Bing Jiang ◽  
Xuan Jun Huang ◽  
Ying Xue Lv ◽  
Xian Bo Zhang

At present, many oil tank wharfs of 300,000DWT which taken the maximum of 450,000DWT supertanker into account had been built in our country. In this paper, through the physical model test on 450,000DWT supertanker, the mooring line tension with different mooring arrangements, cable diameters and cable materials were studied and the wave condition for the supertanker safety operation was given. The results showed that: on the same wave condition, to increase the steel cable’s diameter could reduce the ship’s movements, which could enhance the ability to operation. In addition, using the combination cable on the same diameter instead of the steel cable could reduce the tension of mooring line and increase the working ability effectively. The research results can provide reference and guidance for the future of supertankers mooring operation.


Author(s):  
Pedro M. Calas Lopes Pacheco ◽  
Paulo Pedro Kenedi ◽  
Jorge Carlos Ferreira Jorge ◽  
Marcelo Amorim Savi ◽  
Hugo Gama dos Santos

The increasing expansion of deepwater petroleum activities has resulted in new challenges to the design of mooring systems. The complex mooring systems load history, which consists in a combination of wind, waves and currents, could induce nucleation and propagation of cracks in mooring line components. The failure of a single element in a mooring line of an offshore oil exploitation platform can produce incalculable environment damage as well as human and material losses. Offshore mooring line components like chain links must be submitted to a mandatory proof test, dictated by offshore standards, where loads higher than operational loads are applied to the mechanical component, resulting in high levels of residual stresses. Nevertheless, its presence is not considered in traditional design methodologies. Therefore, it is fundamental to develop new and more precise methodologies for assessing the structural integrity of mooring components. In this article, a comparative study is developed considering different approaches: two bidimensional finite element models, two tridimensional finite element models and an analytic model. These analyses establish the drawbacks and goals of using simpler models in the prediction of studless chain links stress distributions and in their fatigue lives. The four finite element models consider large displacements, plasticity and contact phenomena. Moreover, a simple fatigue life analysis is presented, based on SN curve, considering the effect of residual stresses in studless chain links before operation, that is, with loads caused by the proof test.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Sheng Xu ◽  
A. P. Teixeira ◽  
C. Guedes Soares

Abstract In this paper, a detailed procedure to study the mooring line conditional strength reliability of a semi-submersible platform in a 100-year sea state is presented. A fully coupled analysis is conducted to calculate the mooring line tension of a deepwater semi-submersible floating system operated in the 100-year wave condition in South China Sea. 3-h extreme mooring line tensions are estimated by the average conditional exceedance rate (ACER) method from the data obtained by 10 and 20 min fully coupled dynamic simulations, and the results are validated by the global maximum method. A kriging metamodel is trained to predict the 3-h mooring line extreme tension taking into account the effect of random hydrodynamic drag coefficients. The hydrodynamic sampling points are generated by Latin hypercube sampling technique. A reliability analysis is carried out by Monte Carlo simulation considering the random hydrodynamic drag coefficients and mooring line breaking strength.


Sign in / Sign up

Export Citation Format

Share Document