Reliability Analyses of Clay-Embedded Offshore Pipelines Under Vertical Buckling Considering Lower-Bound Pipe-Soil Capacity

Author(s):  
Celestino Valle-Molina ◽  
Jorge Alamilla-López ◽  
Shadi S. Najjar ◽  
Francisco Silva-González

This paper presents the reliability formulation and analyses for studying and quantifying probabilistically the impact of the main parameters involved in the upheaval buckling of offshore buried pipes due to high pressure high temperature conditions (HPHT) on the reliability of the pipeline. Pipelines are considered installed in a clayey trench and naturally covered. The limit state function is established in terms of the vertical pipe-soil capacity and vertical loading. A lower-bound capacity of the pipe-clayey soil system is included in the reliability analysis in order to represent more realistic conditions with regards to the uncertainty in the capacity. The lower-bound capacity is the smallest possible physical limit of the pipe-soil capacity. Reliability assessments using the main parameters that control the vertical buckling in terms of loading and capacity were performed. Consequently, the variations of the reliability index (β) with the vertical imperfection (δ) and the ratio of the cover height (depth of pipe embedment) to the pipe diameter (H/D) were quantified. The reliability index was evaluated by means of Monte Carlo simulations. The inclusion of the lower-bound capacity by means of a left-censored lognormal distribution was found to increase in some cases the values of β.

Author(s):  
M. R. Emami Azadi

In the present study, the influence of spud-can-soil modeling and parameters on the reliability index of jack-up platform is investigated. Neka platform is studied as a case, which is a three-leg drilling jack-up type platform located in water depth of about 91 m in the Caspian Sea region. Various spud-can-soil interaction models such as pinned, fixed-base, hyperelastic, and nonlinear elastoplastic spud-can models are applied. The soil type is varied from loose to dense sand and also from soft NC clay to very stiff OC Clay. The effect of bias and coefficient of variation (COV) of the spud-can-soil interaction modeling and also the soil parameters such as the effective interface soil friction angle and also the undrained shear strength of clayey soil are studied. The results showed that inclusion of spud-can-soil interaction may have a considerable effect on the reliability of the jack-up platform. In particular, the bias and COV of soil have shown to have more significant effect on the reliability of jack-up platform in loose sand and soft clayey type soils. It is also found that bias in strength modeling of jack-up itself has less profound effect on the reliability index of the jack-up-foundation-soil system. Importance factors of spud-can-soil modeling are found to be quite considerable. The key aspect is that the inclusion of jack-up-spud-can-soil interaction is more crucial with respect to the reliability of jack-up platform than the choice of interaction model itself.


Author(s):  
Ian Matheson ◽  
Wenxing Zhou ◽  
Joe Zhou ◽  
Rick Gailing

The reliability-based design and assessment (RBDA) methodology has gained increasing acceptance in the pipeline industry, largely due to a multi-year PRCI program aimed at establishing RBDA as a viable alternative for the design and assessment of onshore natural gas pipelines. A key limit state of buried pipelines that operate at elevated temperatures is upheaval buckling. The elevated temperatures generate large compressive axial forces that can cause Euler buckling susceptibility. The tendency to buckle is increased at vertical imperfections (i.e. a series of cold formed bends) that primarily occur due to topography. Upheaval buckling in itself is not an ultimate limit state but can lead to high strains, local buckling, high cycle fatigue, expensive remediation measures, and even loss of pressure integrity. The critical forces at which upheaval buckling occurs for typical hill-crest type imperfections present in onshore pipelines cannot be readily predicted using analytical methods. A parametric study is therefore undertaken using non-linear finite element analyses to generate a matrix of upheaval buckling responses. The critical force for the onset of upheaval buckling is then developed using a series of empirical relationships to capture the influences of all key parameters. An upheaval buckling limit state function is subsequently developed by comparing the critical buckling force with applied compressive force, which is a function of operating pressure and temperature differential between the operating and tie-in conditions. The limit state function can be readily implemented in a reliability analysis framework to calculate the pipeline failure probability due to upheaval buckling.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Xuyong Chen ◽  
Qian Chen ◽  
Xiaoya Bian ◽  
Jianping Fan

Due to many uncertainties in nonprobabilistic reliability assessment of bridges, the limit state function is generally unknown. The traditional nonprobabilistic response surface method is a lengthy and oscillating iteration process and leads to difficultly solving the nonprobabilistic reliability index. This article proposes a nonprobabilistic response surface limit method based on the interval model. The intention of this method is to solve the upper and lower limits of the nonprobabilistic reliability index and to narrow the range of the nonprobabilistic reliability index. If the range of the reliability index reduces to an acceptable accuracy, the solution will be considered convergent, and the nonprobabilistic reliability index will be obtained. The case study indicates that using the proposed method can avoid oscillating iteration process, make iteration process stable and convergent, reduce iteration steps significantly, and improve computational efficiency and precision significantly compared with the traditional nonprobabilistic response surface method. Finally, the nonprobabilistic reliability evaluation process of bridge will be built through evaluating the reliability of one PC continuous rigid frame bridge with three spans using the proposed method, which appears to be more simple and reliable when lack of samples and parameters in the bridge nonprobabilistic reliability evaluation is present.


2015 ◽  
Vol 61 (3) ◽  
pp. 133-147 ◽  
Author(s):  
A. Dudzik ◽  
U. Radoń

AbstractThe study deals with stability and dynamic problems in bar structures using a probabilistic approach. Structural design parameters are defined as deterministic values and also as random variables, which are not correlated. The criterion of structural failure is expressed by the condition of non-exceeding the admissible load multiplier and condition of non-exceeding the admissible vertical displacement. The Hasofer-Lind index was used as a reliability measure. The primary research tool is the FORM method. In order to verify the correctness of the calculations Monte Carlo and Importance Sampling methods were used. The sensitivity of the reliability index to the random variables was defined. The limit state function is not an explicit function of random variables. This dependence was determined using a numerical procedure, e.g. the finite element methods. The paper aims to present the communication between the STAND reliability analysis program and the KRATA and MES3D external FE programs.


2020 ◽  
Author(s):  
Nafiseh Kiani

Structural reliability analysis is necessary to predict the uncertainties which may endanger the safety of structures during their lifetime. Structural uncertainties are associated with design, construction and operation stages. In design of structures, different limit states or failure functions are suggested to be considered by design specifications. Load and resistance factors are two essential parameters which have significant impact on evaluating the uncertainties. These load and resistance factors are commonly determined using structural reliability methods. The purpose of this study is to determine the reliability index for a typical highway bridge by considering the maximum moment generated by vehicle live loads on the bridge as a random variable. The limit state function was formulated and reliability index was determined using the First Order Reliability Methods (FORM) method.


Author(s):  
Ali Kaveh ◽  
Seyed Mohammad Javadi ◽  
Roya Mahdipour Moghanni

In this paper, a reliability-based optimization approach is applied using a recently proposed CMA-ES with optimal covariance update and storage complexity. Cholesky-CMA-ES gives a significant increase in optimization speed and reduces the runtime complexity of the standard CMA-ES. The reliability index is the shortest distance between the surface of Limit-State Function (LSF) and the origin of the standard normal space. Hence, finding the reliability index can be expressed as a constrained optimization problem. To verify the concept and test the feasibility of this algorithm, several numerical examples consisting of mathematical and highly nonlinear civil engineering problems are investigated. The reliability indexes obtained agree reasonably well with reported values from some existing approximation methods and Monte Carlo simulation.


2014 ◽  
Vol 635-637 ◽  
pp. 443-446 ◽  
Author(s):  
Hai Tao Lu ◽  
Yu Ge Dong ◽  
Fang Ying Wu

According to the geometric meaning of the structural reliability index, an unconstrained optimization model with structural reliability index and design point is obtained by exterior penalty function method. The Powell method, golden section method and extrapolation method are used to solve the unconstrained optimization problem. The proposed method not has to deal with the any derivative of the limited state function, and can been used to obtain structural reliability index and design point of the strong nonlinear limit state function, which first-order reliability method (FORM) may fail to converge. Three examples are given to compare penalty function method with the difference methods. The results show that the given method is simply, effective and precise enough.


2014 ◽  
Vol 551 ◽  
pp. 648-652
Author(s):  
Xin Zhou Qiao

The two first order reliability methods (FORM) for computing the non-probabilistic reliability index, namely the mean-value method and the design-point method, are investigated. A performance comparison is presented between these two methods. The results show that: (1) the value of the reliability index of the mean-value method depends on the specific form of the limit state function, whereas the value of the reliability index of the design-point one does not;(2) the design-point method should be preferentially used in structural reliability assessment. The conclusions are verified by a numerical example.


2017 ◽  
Vol 54 (12) ◽  
pp. 1693-1703 ◽  
Author(s):  
Seth C. Reddy ◽  
Armin W. Stuedlein

The use of augered cast-in-place (ACIP) piles for transportation infrastructure requires an appropriate reliability-based design (RBD) procedure. In an effort to improve the accuracy of an existing design model and calibrate appropriate resistance factors, this study presents a significantly revised RBD methodology for estimating the shaft and toe bearing capacity of ACIP piles using a large database consisting of static loading tests in predominately granular soils. The proposed design models are unbiased, as opposed to those currently recommended. Based on the reasonable assumption that a finite lower-bound resistance limit exists, lower-bound design lines are developed for shaft and toe bearing resistance by applying a constant ratio to the proposed design models. Resistance factors are calibrated at the strength or ultimate limit state (ULS) for ACIP piles loaded in compression and tension for two commonly used target probabilities of failure with and without lower-bound limits. For piles loaded in compression, separate resistance factors are calibrated for the proposed shaft and toe bearing resistance models. The inclusion of a lower-bound limit for piles loaded in tension results in a 24%–50% increase in the calibrated resistance factor. For piles loaded in compression, the application of a lower-bound limit results in a 20%–150% increase in the calibrated resistance factor, and represents a significant increase in useable pile capacity. Although the impact of a lower-bound limit on resistance factor calibration is directly dependent on the degree of uncertainty in the distribution of resistance, this effect is outweighed by the type of distribution selected (i.e., normal, lognormal) at more stringent target probabilities of failure due to differences in distribution shape at the location of the lower-bound limit. A companion paper explores the use of the revised ULS model in a reliability-based serviceability limit state design framework.


2020 ◽  
Vol 17 (5) ◽  
pp. 719-732
Author(s):  
Leyla Bouzid ◽  
Mohand Hamizi ◽  
Naceur-Eddine Hannachi ◽  
Aghiles Nekmouche ◽  
Karim Akkouche

Purpose The purpose of this study is to establish a relationship between causes and effects, the respect of materials characteristics values [concrete compressive strength (fc) and steel yield stress (fy)] and the norms of the construction dispositions value (covers). This study is motivated by the post-seismic damages related to the plastification of the reinforced concrete (RC)/beams sections, named plastic hinges. The results are given by fragility curves representing the failure probability (Pf) of the plastic hinges versus covers value. Design/methodology/approach A mechanical-reliability coupling methodology is proposed and performed on three frames (three, six and nine storey). For each frame, seven covers the value of reinforcement steel bars has been taken into account in the beams. After definition of the limit state function G(x), a process of idea to twin-track; deterministic and probabilistic, is considered. Thus, numerical simulations are carried out under ETABS© software, to extract a soliciting moments Ms(x). Then, ultimate moments Mu(x), the result of reliability approach are calculated using Monte Carlo Simulations. In this step, two random variables; concrete compressive strength in 28 days of age (fc) and steel yield stress (fy), have been studied. Findings In the mechanical study, the results show that, the first plastic hinge appears at the beams for all frames. In the reliability study, the (fy) variation shows that all plastic hinges are in failure domain, nevertheless, the (fc) variation leads to have all sections in the safety domain, except A7 and B7 models. The failure probability (Pf) calculation according to (fc) and (fy) shows that an absolute error of 0.5 cm in the steel bars covers can switch the frame from the safety domain to the failure domain. Originality/value The plastic hinges reliability of the RC/ frame structures is independent on the high of the structure. The (fc) random variable according to the used distribution law does not affect the reliability (safety or failure). However, the impact of the steel yield stress variation (fy) is not negligible. The errors in covers affect considerably the strength of the elements.


Sign in / Sign up

Export Citation Format

Share Document