Computational Fluid Dynamics Study for Modeling Vortex Induced Vibrations Using High Fidelity Turbulence Models

Author(s):  
Madhusuden Agrawal ◽  
Mohammad A. Elyyan

Flow over smooth cylinder at very high Reynolds number, ReD = 2×106, is simulated using the unsteady Scale Adaptive Simulation (SAS) turbulence model. Flow structures and vortex shedding were accurately captured. Grid sensitivity study was performed to compare averaged drag coefficient for a conformal fine mesh as well as non-conformal coarse mesh. Predicted value of drag coefficient was within 8% of the experimental value and Strouhal number compared well with the experimental observations.

2020 ◽  
Vol 14 (2) ◽  
pp. 6663-6678
Author(s):  
Akshay Sherikar ◽  
P. J. Disimile

The objective of this study is to expound on the deliverables of a steady-state RANS (Reynolds Averaged Navier Stokes) simulation in one of the simplest flows, Couette flow, at a very high Reynolds number. To that end, a process to perform better grid sensitivity testing is introduced. Three two-equation turbulence models ( , , and ) are compared against each other as well as pitted against formal literature on the subject and core flow velocities, slopes, wall-bounded velocities, shear stresses and kinetic energies are analyzed.  applied with enhanced wall functions is consistently found to be in better agreement with previous studies. Finally, plane turbulent Couette flow at  51,099, the range at which it has not been studied experimentally, numerically or analytically in former studies, is simulated. The results are found to be consistent with the trends asserted by literature and preliminary computations of this study.


Author(s):  
Yiannis Constantinides ◽  
Owen H. Oakley

The prediction of deepwater riser Vortex Induced Vibrations (VIV) is one of the most challenging areas in the offshore industry. Numerous experimental and numerical studies have been performed in an effort to improve the understanding and prediction of cylinder VIV behavior. This paper presents the numerical simulation of rigid circular sections, both bare and fitted with strakes, using a second order accurate finite element computational fluid dynamics (CFD) method. Two turbulence models are examined: the Spalart-Allmaras Reynolds Averaged Navier Stokes (RANS) and the Detached Eddy Simulation (DES). Pragmatic high Reynolds number simulations of fixed and moving cylinders are presented and compared with laboratory experiments. Flow visualization provides insights on how strakes mitigate VIV. Comparisons between RANS and DES results are also presented and discussed.


2000 ◽  
Author(s):  
A. K. Saha ◽  
G. Biswas ◽  
K. Muralidhar

Abstract The flow past a square cylinder at a high Reynolds number has been simulated through direct calculations and through the calculations using turbulence models. The present investigation highlights significant differences between the two approaches in terms of instantaneous flow, Strouhal number and the aerodynamic forces. The time-averaged drag coefficient and the rms fluctuations due to the direct calculation are higher than those due to the turbulence model. However, Strouhal number is underpredicted in direct calculations. The effect of shear on the flow has also been determined using the turbulence model. The time-averaged drag coefficient is found to decrease with the increase in shear parameter up to a certain value. Then it increases with the further increase in the shear parameter. On the other hand, the lift coefficient increases with the increase in shear parameter. Strouhal number shows a decreasing trend with the increase in shear parameter whereas the rms values of the drag and lift coefficients increase with the shear parameter. Kármán Vortex Street, mainly comprising of clockwise vortices due to shear, decays slowly compared to uniform flow condition.


1961 ◽  
Vol 10 (3) ◽  
pp. 345-356 ◽  
Author(s):  
Anatol Roshko

Measurements on a large circular cylinder in a pressurized wind tunnel at Reynolds numbers from 106 to 107 reveal a high Reynolds number transition in which the drag coefficient increases from its low supercritical value to a value 0.7 at R = 3.5 × 106 and then becomes constant. Also, for R > 3.5 × 106, definite vortex shedding occurs, with Strouhal number 0.27.


2002 ◽  
Vol 12 (03) ◽  
pp. 393-406 ◽  
Author(s):  
ZI-NIU WU ◽  
SONG FU

The k-epsilon turbulence model for incompressible flow involves two advection–diffusion equations plus point-source terms. We propose a new method for positivity analysis. This method uses an iterative procedure combined with an operator splitting. With this method we recover the well-known positivity result for the standard high Reynolds number model. Most importantly, we are able to prove the positivity result for general low Reynolds number k-epsilon models.


2016 ◽  
Vol 799 ◽  
pp. 159-199 ◽  
Author(s):  
A. Briard ◽  
T. Gomez ◽  
C. Cambon

The present work aims at developing a spectral model for a passive scalar field and its associated scalar flux in homogeneous anisotropic turbulence. This is achieved using the paradigm of eddy-damped quasi-normal Markovian (EDQNM) closure extended to anisotropic flows. In order to assess the validity of this approach, the model is compared to several detailed direct numerical simulations (DNS) and experiments of shear-driven flows and isotropic turbulence with a mean scalar gradient at moderate Reynolds numbers. This anisotropic modelling is then used to investigate the passive scalar dynamics at very high Reynolds numbers. In the framework of homogeneous isotropic turbulence submitted to a mean scalar gradient, decay and growth exponents for the cospectrum and scalar energies are obtained analytically and assessed numerically thanks to EDQNM closure. With the additional presence of a mean shear, the scaling of the scalar flux and passive scalar spectra in the inertial range are investigated and confirm recent theoretical predictions. Finally, it is found that, in shear-driven flows, the small scales of the scalar second-order moments progressively return to isotropy when the Reynolds number increases.


SPE Journal ◽  
2016 ◽  
Vol 21 (03) ◽  
pp. 761-775 ◽  
Author(s):  
Shayan Tavassoli ◽  
Gary A. Pope ◽  
Kamy Sepehrnoori

Summary A systematic simulation study of gravity-stable surfactant flooding was performed to understand the conditions under which it is practical and to optimize its performance. Different optimization schemes were introduced to minimize the effects of geologic parameters and to improve the performance and the economics of surfactant floods. The simulations were carried out by use of horizontal wells in heterogeneous reservoirs. The results show that one can perform gravity-stable surfactant floods at a reasonable velocity and with very-high sweep efficiencies for reservoirs with high vertical permeability. These simulations were carried out with a 3D fine grid and a third-order finite-difference method to accurately model fingering. A sensitivity study was conducted to investigate the effects of heterogeneity and well spacing. The simulations were performed with realistic surfactant properties on the basis of laboratory experiments. The critical velocity for a stable surfactant flood is a function of the microemulsion (ME) viscosity, and it turns out there is an optimum value that one can use to significantly increase the velocity and still be stable. One can optimize the salinity gradient to gradually change the ME viscosity. Another alternative is to inject a low-concentration polymer drive following the surfactant slug (without polymer). Polymer complicates the process and adds to its cost without a significant benefit in most gravity-stable surfactant floods, but an exception is when the reservoir is highly layered. The effect of an aquifer on gravity-stable surfactant floods was also investigated, and strategies were developed for minimizing its effect on the process.


Nanomaterials ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 838 ◽  
Author(s):  
Jan Eggers ◽  
Eckart Lange ◽  
Stephan Kabelac

Recently, several publications gave attention to nanofluid based solar absorber systems in which the solar radiation energy is directly absorbed in the volume of the fluid. This idea could provide advantages over conventionally used surface absorbers regarding the optical and thermal efficiency. For the evaluation of this concept, a numerical approach is introduced and validated in this contribution. The results show that the optical efficiency of a volumetric absorber strongly depends on the scattering behavior of the nanofluid and can reach competitive values only if the particle size distribution is narrow and small. If this is achieved, the surface temperature and therefore the heat loss can be lowered significantly. Furthermore, the surface absorber requires very high Reynolds numbers to transfer the absorbed energy into the working fluid and avoid overheating of the absorber tube. This demand of pumping power can be reduced significantly using the concept of volumetric absorption.


Author(s):  
M. Eaddy ◽  
W. H. Melbourne ◽  
J. Sheridan

The problem of flow-induced vibration has been studied extensively. However, much of this research has focused on the smooth cylinder to gain an understanding of the mechanisms that cause vortex-induced vibration. In this paper results of an investigation of the effect of surface roughness on the cross-wind forces are presented. Measurements of the sectional RMS fluctuating lift forces and the axial correlation of the pressures for Reynolds numbers from 1 × 105 to 1.4 × 106 are given. It was found that surface roughness significantly increased the axial correlation of the pressures to similar values found at high subcritical Reynolds numbers. There was little effect of the surface roughness on the sectional lift forces. The improved correlation of the vortex shedding means rough cylinders will be subject to larger cross-wind forces and an increased possibility of vortex-induced vibration compared to smooth cylinders.


Sign in / Sign up

Export Citation Format

Share Document