Computational Modeling of Rolling Cams for Wave-Energy Capture in a Viscous Fluid

Author(s):  
Yichen Jiang ◽  
Ronald W. Yeung

The performance of an unsymmetrical rolling cam as an ocean-wave energy extractor was studied experimentally by Salter (1974) and then analyzed from the hydrodynamics standpoint by a number of workers in the 70’s (e.g. Evans, 1976). The analysis was carried out on the basis of inviscid-fluid theory and the energy-absorbing efficiency was found to approach 100%. This well-known result did not account for the presence of viscosity, which alters not only fluid damping but also, to some extent, the added-inertia characteristics. How fluid viscosity may alter these conclusions and reduce the energy-extraction effectiveness is examined in this paper, for two rolling-cam shapes: a smooth “Eyeball Cam” with a simple mathematical form and a “Keeled Cam” with a single sharp-edged bilge keel. The solution methodology involved the Free-Surface Random-Vortex Method (FSRVM), reviewed by Yeung (2002). Frequency-domain solutions in inviscid fluid were first sought for these two shapes as baseline performance metrics. As expected, without viscosity, both shapes perform exceedingly well in terms of extraction efficiency. The hydrodynamic properties of these two shapes were then examined in a real, viscous fluid, under a high Reynolds-number assumption. The added moment of inertia and damping are noted to be changed, especially for the Keeled Cam. With the power-take-off (PTO) damping chosen based on the viscous-fluid results, time-domain solutions are developed to understand the behavior of the rolling motion, the effects of PTO damping, and the effects of the cam shapes. These assessments can be effectively made with FSRVM as the computational engine, even at motion of fairly large amplitude, for which an actual system may need to be designed.

Author(s):  
Yichen Jiang ◽  
Ronald W. Yeung

The performance of an asymmetrical rolling cam as an ocean-wave energy extractor was studied experimentally and theoretically in the 70s. Previous inviscid-fluid theory indicated that energy-absorbing efficiency could approach 100% in the absence of real-fluid effects. The way viscosity alters the performance is examined in this paper for two distinctive rolling-cam shapes: a smooth “Eyeball Cam (EC)” with a simple mathematical form and a “Keeled Cam (KC)” with a single sharp-edged keel. Frequency-domain solutions in an inviscid fluid were first sought for as baseline performance metrics. As expected, without viscosity, both shapes, despite their differences, perform exceedingly well in terms of extraction efficiency. The hydrodynamic properties of the two shapes were then examined in a real fluid, using the solution methodology called the free-surface random-vortex method (FSRVM). The added inertia and radiation damping were changed, especially for the KC. With the power-take-off (PTO) damping present, nonlinear time-domain solutions were developed to predict the rolling motion, the effects of PTO damping, and the effects of the cam shapes. For the EC, the coupled motion of sway, heave and roll in waves was investigated to understand how energy extraction was affected.


Author(s):  
Ronald W. Yeung ◽  
Yichen Jiang

Fluid viscosity is known to influence hydrodynamic forces on a floating body in motion, particularly when the motion amplitude is large and the body is of bluff shape. While traditionally these hydrodynamic force or force coefficients have been predicted by inviscid-fluid theory, much recent advances had taken place in the inclusion of viscous effects. Sophisticated Reynolds-Averaged Navier–Stokes (RANS) software are increasingly popular. However, they are often too elaborate for a systematic study of various parameters, geometry or frequency, where many runs with extensive data grid generation are needed. The Free-Surface Random-Vortex Method (FSRVM) developed at UC Berkeley in the early 2000 offers a middle-ground alternative, by which the viscous-fluid motion can be modeled by allowing vorticity generation be either turned on or turned off. The heavily validated FSRVM methodology is applied in this paper to examine how the draft-to-beam ratio and the shaping details of two-dimensional cylinders can alter the added inertia and viscous damping properties. A collection of four shapes is studied, varying from rectangles with sharp bilge corners to a reversed-curvature wedge shape. For these shapes, basic hydrodynamic properties are examined, with the effects of viscosity considered. With the use of these hydrodynamic coefficients, the motion response of the cylinders in waves is also investigated. The sources of viscous damping are clarified.


Author(s):  
Ronald W. Yeung ◽  
Yichen Jiang

Fluid viscosity is known to influence hydrodynamic forces on a floating body in motion, particularly when the motion amplitude is large and the body is of a bluff shape. While these hydrodynamic force or force coefficients have been predicted traditionally by inviscid-fluid theory, much recent advances had taken place in the inclusion of viscous effects. Sophisticated RANS (Reynolds-Averaged Navier Stokes) software are increasingly popular. However, they are often too elaborate for a systematic study of various parameters, geometry or frequency, where many runs with extensive data grid generation are needed. The Free-Surface Random-Vortex Method (FSRVM), developed at UC Berkeley in the early 2000, offers a middle-ground alternative, by which the viscous-fluid motion can be modeled and yet allowing vorticity generation be either turned on or turned off. The heavily validated FSRVM methodology is applied in this paper to examine how the draft-to-beam ratio and the shaping details of two-dimensional cylinders can alter the added inertia and viscous damping properties. A collection of four shapes is studied, varying from rectangles with sharp bilge corners to a reversed-curvature wedge shape. For these shapes, basic hydro-dynamic properties are examined, with the effects of viscosity considered. With the use of these hydrodynamic coefficients, the motion response of the cylinders in waves are also investigated. The origin of viscous damping is clarified. It is a pleasure and honor for the authors to contribute to the Jo Pinkster Symposium, held in his honor in OMAE-2011.


Author(s):  
Yi Shi ◽  
Jianjun Zhu ◽  
Haoyu Wang ◽  
Haiwen Zhu ◽  
Jiecheng Zhang ◽  
...  

Assembled in series with multistage, Electrical Submersible Pumps (ESP) are widely used in offshore petroleum production due to the high production rate and efficiency. The hydraulic performance of ESPs is subjected to the fluid viscosity. High oil viscosity leads to the degradation of ESP boosting pressure compared to the catalog curves under water flow. In this paper, the influence of fluid viscosity on the performance of a 14-stage radial-type ESP under varying operational conditions, e.g. rotational speeds 1800–3500 r/min, viscosities 25–520 cP, was investigated. Numerical simulations were conducted on the same ESP model using a commercial Computational Fluid Dynamics (CFD) software. The simulated average pump head is comparable to the corresponding experimental data under different viscosities and rotational speeds with less than ±20% prediction error. A mechanistic model accounting for the viscosity effect on ESP boosting pressure is proposed based on the Euler head in a centrifugal pump. A conceptual best-match flowrate QBM is introduced, at which the impeller outlet flow direction matches the designed flow direction. The recirculation losses caused by the mismatch of velocity triangles and other head losses resulted from the flow direction change, friction loss and leakage flow etc., are included in the model. The comparison of model predicted pump head versus experimental measurements under viscous fluid flow conditions demonstrates good agreement. The overall prediction error is less than ±10%.


2015 ◽  
Vol 7 (3) ◽  
pp. 21-31 ◽  
Author(s):  
D. R. Kuiry ◽  
S. Bahadur

The steady flow behavior of a viscous, incompressible and electrically conducting fluid between two parallel infinite insulated horizontal porous plates with heat transfer is investigated along with the effect of an external uniform transverse magnetic field, the action of inflow normal to the plates, the pressure gradient on the flow and temperature. The fluid viscosity is supposed to vary exponentially with the temperature. A numerical solution for the governing equations for both the momentum transfer and energy transfer has been developed using the finite difference method. The velocity and temperature distribution graphs have been presented under the influence of different values of magnetic inclination, fluid pressure gradient, inflow acting perpendicularly on the plates, temperature dependent viscosity and the Hartmann number. In our study viscosity is shown to affect the velocity graph. The flow parameters such as viscosity, pressure and injection of fluid normal to the plate can cause reverse flow. For highly viscous fluid, reverse flow is observed. The effect of magnetic force helps to restrain this reverse flow.


2008 ◽  
Vol 75 (3) ◽  
Author(s):  
Samer Hassan ◽  
Masahiro Kawaji

The effects of small vibrations on particle motion in a viscous fluid cell have been investigated experimentally and theoretically. A steel particle was suspended by a thin wire at the center of a fluid cell, and the cell was vibrated horizontally using an electromagnetic actuator and an air bearing stage. The vibration-induced particle amplitude measurements were performed for different fluid viscosities (58.0cP and 945cP), and cell vibration amplitudes and frequencies. A viscous fluid model was also developed to predict the vibration-induced particle motion. This model shows the effect of fluid viscosity compared to the inviscid model, which was presented earlier by Hassan et al. (2004, “The Effects of Vibrations on Particle Motion in an Infinite Fluid Cell,” ASME J. Appl. Mech., 73(1), pp. 72–78) and validated using data obtained for water. The viscous model with modified drag coefficients is shown to predict well the particle amplitude data for the fluid viscosities of 58.5cP and 945cP. While there is a resonance frequency corresponding to the particle peak amplitude for oil (58.0cP), this phenomenon disappeared for glycerol (945cP). This disappearance of resonance phenomenon is explained by referring to the theory of mechanical vibrations of a mass-spring-damper system. For the sinusoidal particle motion in a viscous fluid, the effective drag force has been obtained, which includes the virtual mass force, drag force proportional to the velocity, and the Basset or history force terms.


2019 ◽  
Vol 877 ◽  
pp. 1063-1097 ◽  
Author(s):  
Liam C. Morrow ◽  
Timothy J. Moroney ◽  
Scott W. McCue

Viscous fingering experiments in Hele-Shaw cells lead to striking pattern formations which have been the subject of intense focus among the physics and applied mathematics community for many years. In recent times, much attention has been devoted to devising strategies for controlling such patterns and reducing the growth of the interfacial fingers. We continue this research by reporting on numerical simulations, based on the level set method, of a generalised Hele-Shaw model for which the geometry of the Hele-Shaw cell is altered. First, we investigate how imposing constant and time-dependent injection rates in a Hele-Shaw cell that is either standard, tapered or rotating can be used to reduce the development of viscous fingering when an inviscid fluid is injected into a viscous fluid over a finite time period. We perform a series of numerical experiments comparing the effectiveness of each strategy to determine how these non-standard Hele-Shaw configurations influence the morphological features of the inviscid–viscous fluid interface. Surprisingly, a converging or diverging taper of the plates leads to reduced metrics of viscous fingering at the final time when compared to the standard parallel configuration, especially with carefully chosen injection rates; for the rotating plate case, the effect is even more dramatic, with sufficiently large rotation rates completely stabilising the interface. Next, we illustrate how the number of non-splitting fingers can be controlled by injecting the inviscid fluid at a time-dependent rate while increasing the gap between the plates. Our simulations compare well with previous experimental results for various injection rates and geometric configurations. We demonstrate how the number of non-splitting fingers agrees with that predicted from linear stability theory up to some finger number; for larger values of our control parameter, the fully nonlinear dynamics of the problem leads to slightly fewer fingers than this linear prediction.


Geophysics ◽  
2020 ◽  
Vol 85 (3) ◽  
pp. R163-R175
Author(s):  
Huaizhen Chen ◽  
Junxiao Li ◽  
Kristopher A. Innanen

Based on a model of attenuative cracked rock, we have derived a simplified and frequency-dependent stiffness matrix associated with (1) a rock volume containing aligned and partially saturated cracks and (2) a new indicator of oil-bearing fractured reservoirs, which is related to pressure relaxation in cracked rocks and influenced by fluid viscosity and saturation. Starting from the mathematical form of a perturbation in this stiffness matrix across a reflecting interface separating two attenuative cracked media, we set up a linearized P-wave to P-wave reflection coefficient as an azimuthally and frequency-dependent function of dry rock elastic properties, dry fracture weaknesses, and the new indicator. By varying this reflection coefficient with azimuthal angle, we derive a further expression referred to as the quasidifference in elastic impedance, or [Formula: see text], which is primarily affected by the dry fracture weaknesses and the new indicator. An inversion approach is established to use differences in frequency components of seismic amplitudes to estimate these weaknesses and the indicator based on the derived [Formula: see text]. In synthetic inversion tests, we determine that the approach produces interpretable parameter estimates in the presence of data with a moderate signal-to-noise ratio (S/N). Testing on a real data set suggests that reliable fracture weakness and indicator are generated by the approach; fractured and oil-bearing reservoirs are identified through a combination of the dry fracture weakness and the new indicator.


1986 ◽  
Vol 108 (3) ◽  
pp. 304-312 ◽  
Author(s):  
C. G. Speziale ◽  
F. Sisto ◽  
S. Jonnavithula

A numerical simulation of propagating stall in a linear cascade of airfoils at high Reynolds numbers is conducted using a vortex method which was first developed by Spalart [7] for this problem. In this approach, the vorticity is discretized into a large collection of vortex blobs whose motion is tracked in time by the use of a well-known vortex tracing algorithm based on the Euler equation. The near-wall effects of viscosity are accounted for by the creation of discrete vortex sheets at the boundaries of the airfoils consistent with the no-slip condition. These boundary vortices are then released into the flow field downstream of the separation points which are obtained from a boundary-layer routine. Calculations are presented for a variety of flow geometries. It is demonstrated that (for a given cascade of airfoils, disturbance wavelength, and stagger angle) several different flow regimes are obtained: Attached flow at lower angles of attack and a chaotic deep stall configuration at larger angles of attack with a narrow intermediate range of such angles where propagating stall occurs. The physical characteristics of this propagating stall are parameterized and a quantitative study of the effects of camber and imposed wavelength is conducted. Comparisons are made with previous theoretical and experimental studies.


Sign in / Sign up

Export Citation Format

Share Document