Free Surface Effects on Hydrodynamic Analysis of Flapping Foil Thruster in Waves

Author(s):  
E. S. Filippas ◽  
K. A. Belibassakis

The analysis of an oscillating wing located beneath the ship’s hull is investigated as an unsteady thruster, augmenting the overall propulsion of the ship and offering dynamic stabilization. The unsteady thruster undergoes a combined oscillatory motion in the presence of waves. For the system in horizontal arrangement the vertical heaving motion is induced by the motion of the ship in waves, essentially ship heave and pitch, while the rotational pitching motion of the flapping propulsor about its pivot axis is set by an active control mechanism. Our method is based on coupling the seakeeping operators associated with the longitudinal and transverse ship motions with the hydrodynamic forces and moments produced by the flapping lifting surfaces, using simplified unsteady lifting line theory. First numerical results presented in Belibassakis & Politis [1],[2] indicate that high levels of efficiency are obtained in sea conditions of moderate and higher severity, under optimal control settings. For the detailed investigation of the effects of the free surface in the present paper a potential-based panel method has been developed for the hydrodynamic analysis of 2D hydrofoil operating beneath the free surface, undergoing heaving and pitching oscillations while moving with constant forward speed. The instantaneous angle of attack is influenced by the foil oscillatory motion and by the incident waves. At a first stage of development we consider moderate submergence and relatively low speeds permitting us to approximately neglect effects due to breaking waves and cavitation. Numerical results are presented concerning the numerical performance of the developed BEM. Also results concerning the thrust coefficient and the efficiency of the system over a range of motion parameters, including reduced frequency, Strouhal number, feathering parameter and compared against other methods. Our analysis indicates that significant efficiency can be obtained under optimal operating conditions. Thus, the present method can serve as a useful tool for assessment and the preliminary design and control of such systems extracting energy from sea waves for marine propulsion.

Author(s):  
E. S. Filippas ◽  
K. A. Belibassakis

Oscillating foils located beneath the ship’s hull are investigated an unsteady thrusters, augmenting the overall propulsion of the ship in rough seas and offering dynamic roll stabilization. The foil undergoes a combined oscillatory motion in the presence of waves. For the system in the horizontal arrangement the vertical heaving motion of the hydrofoil is induced by the motion of the ship in waves, essentially ship heave and pitch, while the rotational pitching motion of the foil about its pivot axis is set by an active control mechanism. In previous works, a potential-based panel method has been developed for the detailed investigation of the effects of free surface in harmonic waves, and the results are found to be in good agreement with numerical predictions from other methods and experimental data. Also, it has been demonstrated that significant energy can be extracted from the waves. In the present work we examine further the possibility of energy extraction under random wave conditions using active pitch control. More specifically, we consider operation of the foil in head waves characterized by a given frequency spectrum, corresponding to specific sea states. The effects of the wavy free surface are taken into account through the satisfaction of the corresponding boundary conditions. Numerical results concerning thrust coefficient are shown, indicating that significant efficiency can be obtained under optimal operating conditions. Thus, the present method can serve as a useful tool for the preliminary design, assessment and optimum control of such systems extracting energy from sea waves and augmenting marine propulsion.


Author(s):  
Katuri Samarpana

Ship hydrodynamics present many unique challenges due to complex geometry, environment, and operating conditions, which results in many complex physics and modelling issues. This is commonly studied through experiments in a towing tank and experiments in a sea keeping and manoeuvring basin. Recently hydrodynamicists have begun to venture into computational prediction of hydrodynamic behaviour of surface ships. Free surface phenomenon around a ship hull plays an important role in its resistance. Wave making resistance comes from the very presence of free surface. Therefore its accurate prediction is very essential for ship design. The flow problem to be simulated is rich in complexity and poses many modelling challenges because of the existence of breaking waves around the ship hull involving two-phase flow, and because of the resolution of thin turbulent boundary layer. The paper aims to computationally estimate the effect of free surface for a moving ship. Commercial software is used for grid generation and flow solution. 1. Solution of a Rudder of a ship in submerged condition. Few different shapes of the rudders are examined. 2. Solution of flow- around a complete ship with free surface. In the present work, flow through the ship hull is computed using a finite volume commercial code, ANSYS 12.1. The ship geometry is modelled using solid modelling software, CATIA V5R9. A three-dimensional structured hexahedral grid is generated using grid generating code, ICEM-CFD V10.0 .Turbulence is modelled with Reynolds Stress model. The resistance of the ship is predicted, and compared against the experimental values. The rudder of the ship is also analyzed. Two different shapes, one wedge shaped and a standard NACA0012 foil, for which experimental results are available in literature, are analyzed. The lift coefficients and flow separation are predicted for different angles of attack using various turbulence models.Computational results are in good agreement with the experimental ones.


Author(s):  
Riaan van ‘t Veer

This paper presents numerical results of ship motions and global stinger loads through a combined hydrodynamic analysis of a pipe lay vessel with submerged stinger. The results of nonlinear time domain simulations are compared to those obtained through linearization of the Morison load on the slender stinger elements. Through linearization, an iterative frequency domain solution scheme is developed reducing analysis time significantly. Response amplitude operators in operating and limiting sea states are shown, including the influence of current velocity. Through nonlinear time domain simulations insight is obtained on the distribution and magnitude of the extreme values.


Author(s):  
Milovan Peric ◽  
Tobias Zorn ◽  
Ould el Moctar ◽  
Thomas E. Schellin ◽  
Yong-Soo Kim

The purpose of this paper was to demonstrate the application of a procedure to predict internal sloshing loads on partially filled tank walls of liquefied natural gas (LNG) tankers that are subject to the action of sea waves. The method is numerical. We used a moving grid approach and a finite-volume solution method designed to allow for arbitrary ship motions. An interface-capturing scheme that accounts for overturning and breaking waves computed the motion of liquid inside the tanks. The method suppressed numerical mixing. Mixing effects close to the interface were buried in the numerical treatment of the interface. This interface, which was at least one cell wide, amounted to about 20–50 cm at full scale. Droplets and bubbles smaller than mesh size were not resolved. Tank walls were considered rigid. The results are first presented for an LNG tank whose motion was prescribed in accordance with planned laboratory experiments. Both two-dimensional and three-dimensional simulations were performed. The aim was to demonstrate that (1) realistic loads can be predicted using grids of moderate fineness, (2) the numerical method accurately resolves the free surface even when severe fragmentation occurs, and (3) long-term simulations over many oscillation periods are possible without numerical mixing of liquid and gas. The coupled simulation of a sea-going full-sized LNG tanker with partially filled tanks demonstrated the plausibility of this approach. Comparative experimental data were unavailable for validation; however, results were plausible and encouraged further validation.


1998 ◽  
Vol 359 ◽  
pp. 239-264 ◽  
Author(s):  
PENGZHI LIN ◽  
PHILIP L.-F. LIU

This paper describes the development of a numerical model for studying the evolution of a wave train, shoaling and breaking in the surf zone. The model solves the Reynolds equations for the mean (ensemble average) flow field and the k–ε equations for the turbulent kinetic energy, k, and the turbulence dissipation rate, ε. A nonlinear Reynolds stress model (Shih, Zhu & Lumley 1996) is employed to relate the Reynolds stresses and the strain rates of the mean flow. To track free-surface movements, the volume of fluid (VOF) method is employed. To ensure the accuracy of each component of the numerical model, several steps have been taken to verify numerical solutions with either analytical solutions or experimental data. For non-breaking waves, very accurate results are obtained for a solitary wave propagating over a long distance in a constant depth. Good agreement between numerical results and experimental data has also been observed for shoaling and breaking cnoidal waves on a sloping beach in terms of free-surface profiles, mean velocities, and turbulent kinetic energy. Based on the numerical results, turbulence transport mechanisms under breaking waves are discussed.


2020 ◽  
Vol 27 (1) ◽  
pp. 29-38
Author(s):  
Teng Zhang ◽  
Junsheng Ren ◽  
Lu Liu

AbstractA three-dimensional (3D) time-domain method is developed to predict ship motions in waves. To evaluate the Froude-Krylov (F-K) forces and hydrostatic forces under the instantaneous incident wave profile, an adaptive mesh technique based on a quad-tree subdivision is adopted to generate instantaneous wet meshes for ship. For quadrilateral panels under both mean free surface and instantaneous incident wave profiles, Froude-Krylov forces and hydrostatic forces are computed by analytical exact pressure integration expressions, allowing for considerably coarse meshes without loss of accuracy. And for quadrilateral panels interacting with the wave profile, F-K and hydrostatic forces are evaluated following a quad-tree subdivision. The transient free surface Green function (TFSGF) is essential to evaluate radiation and diffraction forces based on linear theory. To reduce the numerical error due to unclear partition, a precise integration method is applied to solve the TFSGF in the partition computation time domain. Computations are carried out for a Wigley hull form and S175 container ship, and the results show good agreement with both experimental results and published results.


2021 ◽  
Vol 36 (3) ◽  
pp. 165-176
Author(s):  
Kirill Nikitin ◽  
Yuri Vassilevski ◽  
Ruslan Yanbarisov

Abstract This work presents a new approach to modelling of free surface non-Newtonian (viscoplastic or viscoelastic) fluid flows on dynamically adapted octree grids. The numerical model is based on the implicit formulation and the staggered location of governing variables. We verify our model by comparing simulations with experimental and numerical results known from the literature.


Author(s):  
C. J. Hooke

In heavily loaded, piezoviscous contacts the surface roughness tends to be flattened inside the conjunction by any relative sliding of the surfaces. However, before it is flattened, the roughness affects the inlet to the contact, producing clearance variations there. These variations are then convected through the contact, at the entrainment velocity, producing a clearance distribution that differs from the original surface. The present paper explores this behaviour and establishes how the amplitude of the convected clearance varies with wavelength and operating conditions. It is shown that the primary influence is the ratio of the wavelength to the inlet length of the conjunction. Where this ratio is large, the roughness is smoothed and there is little variation in clearance under the conjunction. Where the ratio is small, significant variations in clearance may occur but the precise amplitude and phasing depend on the ratio of slide to roll velocities and on the value of a piezoviscous parameter, c. The numerical results agree closely with existing solutions but extend these to cover the full range of operating conditions.


Author(s):  
Jannette B. Frandsen ◽  
Alistair G. L. Borthwick

Nonlinear effects of standing wave motions in fixed and vertically excited tanks are numerically investigated. The present fully nonlinear model analyses two-dimensional waves in stable and unstable regions of the free-surface flow. Numerical solutions of the governing nonlinear potential flow equations are obtained using a finite-difference time-stepping scheme on adaptively mapped grids. A σ-transformation in the vertical direction that stretches directly between the free-surface and bed boundary is applied to map the moving free surface physical domain onto a fixed computational domain. A horizontal linear mapping is also applied, so that the resulting computational domain is rectangular, and consists of unit square cells. The small-amplitude free-surface predictions in the fixed and vertically excited tanks compare well with 2nd order small perturbation theory. For stable steep waves in the vertically excited tank, the free-surface exhibits nonlinear behaviour. Parametric resonance is evident in the instability zones, as the amplitudes grow exponentially, even for small forcing amplitudes. For steep initial amplitudes the predictions differ considerably from the small perturbation theory solution, demonstrating the importance of nonlinear effects. The present numerical model provides a simple way of simulating steep non-breaking waves. It is computationally quick and accurate, and there is no need for free surface smoothing because of the σ-transformation.


Author(s):  
H. Zimmermann ◽  
R. Gumucio ◽  
K. Katheder ◽  
A. Jula

Performance and aerodynamic aspects of ultra-high bypass ratio ducted engines have been investigated with an emphasis on nozzle aerodynamics. The interference with aircraft aerodynamics could not be covered. Numerical methods were used for aerodynamic investigations of geometrically different aft end configurations for bypass ratios between 12 and 18, this is the optimum range for long missions which will be important for future civil engine applications. Results are presented for a wide range of operating conditions and effects on engine performance are discussed. The limitations for higher bypass ratios than 12 to 18 do not come from nozzle aerodynamics but from installation effects. It is shown that using CFD and performance calculations an improved aerodynamic design can be achieved. Based on existing correlations, for thrust and mass-flow, or using aerodynamic tailoring by CFD and including performance investigations, it is possible to increase the thrust coefficient up to 1%.


Sign in / Sign up

Export Citation Format

Share Document