Wave-in-Deck Load on a Jacket Platform, CFD Calculations Compared With Experiments

Author(s):  
Bogdan Iwanowski ◽  
Tone Vestbøstad ◽  
Marc Lefranc

The paper presents an industrial application of CFD for calculation of Wave-In-Deck load due to an extreme wave. Particular attention is given to flow kinematics initialization that is necessary to start up a CFD simulation. The applied CFD code, ComFLOW, is a Navier-Stokes equation solver with an improved Volume of Fluid (iVOF) method employed to displace and re-construct fluids free surface. For incoming waves high enough for a negative air-gap and therefore with Wave-In-Deck loads, a jacket platform was tested in model basin, for both regular and irregular wave cases. One of goals of these model tests was verification of CFD codes. The experimental and computational models of the structure are exactly the same. In the paper, the measured Wave-In-Deck forces are compared with CFD results.

Author(s):  
Bogdan Iwanowski ◽  
Rune Gladso̸ ◽  
Marc Lefranc

The paper presents an industrial application of CFD and non-linear structural response codes in offshore technology. A Wave-In-Deck load due to an extreme wave, acting on a jacket platform, is studied numerically. Particular attention is given to details of local flow and local non-linear dynamical response of the structure. A very detailed FEM model of the platform deck structure, composed of shell elements, is embedded into a non body-conforming CFD grid of computational cells. The applied CFD code is a Navier-Stokes equation solver with an improved Volume of Fluid (iVOF) method employed to displace and re-construct fluid’s free surface and uses a simple, Cartesian grid. The two computational grids, FEM and CFD, are independent. The challenge of a direct mapping of CFD-derived fluid pressures onto structural FEM shell elements is addressed. Then the non-linear dynamical response of the structure is found in time domain. The employed CFD code is ComFLOW while the FEM part is handled by the well-known commercial program LS-DYNA. The composed approach utilizes both robustness of VOF-based methods in tracking of the fluid’s free surface and reliability of FEM structural codes such as LS-DYNA.


2014 ◽  
Vol 554 ◽  
pp. 696-700 ◽  
Author(s):  
Nur Farhana Mohamad Kasim ◽  
Sheikh Ahmad Zaki ◽  
Mohamed Sukri Mat Ali ◽  
Ahmad Faiz Mohammad ◽  
Azli Abd Razak

Wind-induced ventilation is widely acknowledged as one of the best approaches for inducing natural ventilation. Computational fluid dynamics (CFD) technique is gaining popularity among researchers as an alternative for experimental methods to investigate the behavior of wind-driven ventilation in building. In this present paper, Reynolds averaged Navier-Stokes equation (RANS) k-ε model approach is considered to simulate the airflow on a simplified cubic building with an opening on a single façade. Preliminary simulation using models from previous experiment indicates the reliability of OpenFOAM, the open source software that will be used in this study. The results obtained in this study will better define options for our future study which aims to explore how different buildings arrays modify the airflow inside and around a naturally ventilated building.


Author(s):  
Jaekyung Heo ◽  
Jong-Chun Park ◽  
Moo-Hyun Kim ◽  
Weon-Cheol Koo

In this paper, the potential and viscous flows are simulated numerically around a 2-D floating body with a moonpool (or a small gap) with particular emphasis on the piston mode. The floating body with moonpool is forced to heave in time domain. Linear potential code is known to give overestimated free-surface heights inside the moonpool. Therefore, a free-surface lid in the gap or similar treatments are widely employed to suppress the exaggerated phenomenon by potential theory. On the other hand, Navier-Stokes equation solvers based on a FVM can be used to take account of viscosity. Wave height and phase shift inside and outside the moon-pool are computed and compared with experimental results by Faltinsen et al. (2007) over various heaving frequencies. Pressure and vorticity fields are investigated to better understand the mechanism of the sway force induced by the heave motion. Furthermore, a nonlinear potential code is utilized to compare with the viscous flow. The viscosity effects are investigated in more detail by solving Euler equations. It is found that the viscous flow simulations agree very well with the experimental results without any numerical treatment.


2016 ◽  
Vol 821 ◽  
pp. 113-119 ◽  
Author(s):  
Eduard Stach ◽  
Jiří Falta ◽  
Matěj Sulitka

Tilting (parallelism error) of guiding surfaces may cause reduction of load capacity of hydrostatic (HS) guideways and bearings in machine tools (MT). Using coupled finite element (FE) computational models of MT structures, it is nowadays possible to determine the extent of guiding surfaces deformation caused by thermal effects, gravitational force, cutting forces and inertia effects. Assessment of maximum allowable tilt has so far been based merely on experience. The paper presents a detailed model developed for description of the effect of HS bearing tilt on the load capacity characteristics of HS guideways. The model allows an evaluation of the tilt influence on the change of the characteristics as well as determination of the limit values of allowable tilt in interaction with compliant machine tool structure. The proposed model is based on the model of flow over the land of the HS pocket under extended Navier-Stokes equation. The model is verified using an experimental test rig.


1987 ◽  
Vol 54 (4) ◽  
pp. 951-954 ◽  
Author(s):  
Cyrus K. Aidun

The mechanics of a free surface viscous liquid curtain flowing steadily between two vertical guide wires under the influence of gravity is investigated. The Navier-Stokes equation is integrated over the film thickness and an integro-differential equation is derived for the average film velocity. An approximate nonlinear differential equation, attributed to G. I. Taylor, is obtained by neglecting the higher order terms. An analytical solution is obtained for a similar equation which neglects the surface tension effects and the results are compared with the experimental measurements of Brown (1961).


Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 391
Author(s):  
Magedi Moh M. Saad ◽  
Sofian Mohd ◽  
Mohd Fadhli Zulkafli ◽  
Nor Afzanizam Samiran ◽  
Djamal Hissein Didane

The present paper aims to study the possibility of dispensing an auxiliary power unit (APU) in an aircraft powered by fossil fuels to reduce air pollution. It particularly seeks to evaluate the amount of power generated by the ram air turbine (RAT) using the novel counter-rotating technique while characterizing its optimum axial distance. The ram air turbine (RAT), which is already equipped in aircrafts, was enhanced to generate the amount of energy produced by the APU. The approach was implemented by a CRRAT system. Six airfoil profiles were tested based on 2D models and the best airfoil was chosen for implantation on the RAT and CRRAT systems. The performance of the conventional single-rotor RAT and CRRAT were analyzed using FLUENT software based on 3D models. The adopted numerical scheme was the Navier–Stokes equation with k–ω SST turbulence modeling. The dynamic mesh and user-defined function (UDF) were used to revolve the rotor turbine via wind. The results indicated that the FX63-137 airfoil profile showed a higher performance in terms of the lift-to-drag ratio compared to the other airfoils. The optimum axial distance between the two rotors was 0.087 m of the rotor diameter and the efficiency of the new CRRAT increased to almost 45% compared to the single-rotor RAT.


Author(s):  
Akinola A. Adeniyi ◽  
Hervé P. Morvan ◽  
Kathy A. Simmons

In this paper, we present results for the application of an Eulerian-Lagrangian technique to the transient simulation of an oil film formation on the walls of an aeroengine bearing chamber. The flow of oil in an aeroengine bearing chamber consists of high speed oil droplets interacting with the bearing structures and flowing oil film. The situation in the chamber is highly rotational and consisting of sheared flow of air over oil. The bearing chamber may also be located in the vicinity of the combustion chamber. The oil provides lubrication and cooling of the hot structures. Modelling the flow in the bearing chamber is therefore complex. The Volume of Fluid (VoF) technique offers a potential platform to model droplet-film interaction; however, it requires fine mesh details to capture the flow to the droplet level. Such detailed resolution would not be practical for the complete chamber geometry because of the prohibitively expensive computational overhead requirements. A Lagrangian formulation is therefore proposed to represent the droplets as source terms in the Navier-Stokes equation while the film is represented using VoF. This effectively reduces the need to resolve the droplets explicitly. The predicted film formation pattern compares with experimental results.


Author(s):  
X Zhang ◽  
N M Sudharsan ◽  
R Ajaykumar ◽  
K Kumar

Modelling free-surface flow has very important applications in many engineering areas such as oil transportation and offshore structures. Current research focuses on the modelling of free surface flow in a tank by solving the Navier-Stokes equation. An unstructured finite volume method is used to discretize the governing equations. The free surface is tracked by dynamically adapting the mesh and making it always surface conforming. A mesh-smoothing scheme based on the spring analogy is also implemented to ensure mesh quality throughout the computaiton. Studies are performed on the sloshing response of a liquid in an elastic container subjected to various excitation frequencies. Further investigations are also carried out on the critical frequency that leads to large deformation of the tank walls. Another numerical simulation involves the free-surface flow past as submerged obstacle placed in the tank to show the flow separation and vortices. All these cases demonstrate the capability of this numerical method in modelling complicated practical problems.


2014 ◽  
Vol 493 ◽  
pp. 267-272
Author(s):  
I. Nyoman Suprapta Winaya ◽  
I. Made Agus Putrawan ◽  
I. Nyoman Gede Sujana ◽  
Made Sucipta

This study aims to predict heat transfer from a heated bed in a gas fluidized bed using Syamlal-OBrien drag coefficient. Discrete particles model with the Navier-Stokes equation and Eulerian multiphase are used to approach heat transfer simulation. Coefficient of heat transfer which is related to Nusselt Number and volume fraction are calculated using Gunn model which was compiled from C++ program language. The effect of fluidization velocity variation on the heat transfer coefficient comes to the fore, indicating the heat transfer and solid volume fraction at the bed height are very dependent. Contour of solid volume fraction and temperature distribution are also presented.


Sign in / Sign up

Export Citation Format

Share Document