From Single Point Gauge to Spatio-Temporal Measurement of Ocean Waves: Prospects and Perspectives

Author(s):  
Paul C. Liu ◽  
J. C. Nieto Borge ◽  
German Rodriguez ◽  
Keith R. MacHutchon ◽  
Hsuan S. Chen

With the recent advancement of spatial measurements of ocean waves, we are clearly facing new challenges regarding how to handle an expanded new data system when it becomes widely available. In this paper we wish to present a preliminary attempt at confronting these prospects. Because the data is still very limited at present and also conceptually new, it’s a new, unfamiliar, and unrelenting world to pursue. We need a paradigm shift away from our familiar single-point conceptualization in order to effective approach the new world of truly spatial ocean waves.

2015 ◽  
Vol 778 ◽  
pp. 216-252 ◽  
Author(s):  
C. D. Pokora ◽  
J. J. McGuirk

Stereoscopic three-component particle image velocimetry (3C-PIV) measurements have been made in a turbulent round jet to investigate the spatio-temporal correlations that are the origin of aerodynamic noise. Restricting attention to subsonic, isothermal jets, measurements were taken in a water flow experiment where, for the same Reynolds number and nozzle size, the shortest time scale of the dynamically important turbulent structures is more than an order of magnitude greater that in equivalent airflow experiments, greatly facilitating time-resolved PIV measurements. Results obtained (for a jet nozzle diameter and velocity of 40 mm and $1~\text{m}~\text{s}^{-1}$, giving $\mathit{Re}=4\times 10^{4}$) show that, on the basis of both single-point statistics and two-point quantities (correlation functions, integral length scales) the present incompressible flow data are in excellent agreement with published compressible, subsonic airflow measurements. The 3C-PIV data are first compared to higher-spatial-resolution 2C-PIV data and observed to be in good agreement, although some deterioration in quality for higher-order correlations caused by high-frequency noise in the 3C-PIV data is noted. A filter method to correct for this is proposed, based on proper orthogonal decomposition (POD) of the 3C-PIV data. The corrected data are then used to construct correlation maps at the second- and fourth-order level for all velocity components. The present data are in accordance with existing hot-wire measurements, but provide significantly more detailed information on correlation components than has previously been available. The measured relative magnitudes of various components of the two-point fourth-order turbulence correlation coefficient ($R_{ij,kl}$) – the fundamental building block for free shear flow aerodynamic noise sources – are presented and represent a valuable source of validation data for acoustic source modelling. The relationship between fourth-order and second-order velocity correlations is also examined, based on an assumption of a quasi-Gaussian nearly normal p.d.f. for the velocity fluctuations. The present results indicate that this approximation shows reasonable agreement for the measured relative magnitudes of several correlation components; however, areas of discrepancy are identified, indicating the need for work on alternative models such as the shell turbulence concept of Afsar (Eur. J. Mech. (B/Fluids), vol. 31, 2012, pp. 129–139).


2016 ◽  
Vol 10 (4) ◽  
pp. 1495-1511 ◽  
Author(s):  
Ghislain Picard ◽  
Laurent Arnaud ◽  
Jean-Michel Panel ◽  
Samuel Morin

Abstract. Although both the temporal and spatial variations of the snow depth are usually of interest for numerous applications, available measurement techniques are either space-oriented (e.g. terrestrial laser scans) or time-oriented (e.g. ultrasonic ranging probe). Because of snow heterogeneity, measuring depth in a single point is insufficient to provide accurate and representative estimates. We present a cost-effective automatic instrument to acquire spatio-temporal variations of snow depth. The device comprises a laser meter mounted on a 2-axis stage and can scan  ≈  200 000 points over an area of 100–200 m2 in 4 h. Two instruments, installed in Antarctica (Dome C) and the French Alps (Col de Porte), have been operating continuously and unattended over 2015 with a success rate of 65 and 90 % respectively. The precision of single point measurements and long-term stability were evaluated to be about 1 cm and the accuracy to be 5 cm or better. The spatial variability in the scanned area reached 7–10 cm (root mean square) at both sites, which means that the number of measurements is sufficient to average out the spatial variability and yield precise mean snow depth. With such high precision, it was possible for the first time at Dome C to (1) observe a 3-month period of regular and slow increase of snow depth without apparent link to snowfalls and (2) highlight that most of the annual accumulation stems from a single event although several snowfall and strong wind events were predicted by the ERA-Interim reanalysis. Finally the paper discusses the benefit of laser scanning compared to multiplying single-point sensors in the context of monitoring snow depth.


Author(s):  
Irene Erlyn Wina Rachmawan ◽  
Ali Ridho Barakbah ◽  
Tri Harsono

Deforestation is one of the crucial issues in Indonesia. In 2012, deforestation rate in Indonesia reached 0.84 million hectares, exceeding Brazil. According to the 2009 Guinness World Records, Indonesia's deforestation rate was 1.8 million hectares per year between 2000 and 2005. An interesting view is the fact that Indonesia government denied the deforestation rate in those years and said that the rate was only 1.08 million hectares per year in 2000 and 2005. The different problem is on the technique how to deal with the deforestation rate. In this paper, we proposed a new approach for automatically identifying the deforestation area and measuring the deforestation rate. This approach involves differential image processing for detecting Spatio-temporal nature changes of deforestation. It consists series of important features extracted from multiband satellite images which are considered as the dataset of the research. These data are proceeded through the following stages: (1) Automatic clustering for multiband satellite images, (2) Reinforcement Programming to optimize K-Means clustering, (3) Automatic interpretation for deforestation areas, and (4) Deforestation measurement adjusting with elevation of the satellite. For experimental study, we applied our proposed approach to analyze and measure the deforestation in Mendawai, South Borneo. We utilized Landsat 7 to obtain the multiband images for that area from the year 2001 to 2013. Our proposed approach is able to identify the deforestation area and measure the rate. The experiment with our proposed approach made a temporal measurement for the area and showed the increasing deforestation size of the area 1.80 hectares during those years.


2011 ◽  
Vol 52 (1) ◽  
pp. 22-27
Author(s):  
Jonas Rossmanith ◽  
Wilfried Funk ◽  
Carmen Eha

Mit dem BilMoG ist die weitreichendste Reform des deutschen Bilanzrechts seit mehr als 20 Jahren in Kraft getreten. Dabei ist das neue Aktivierungswahlrecht für immaterielle Vermögensgegenstände des Anlagevermögens eine der bedeutendsten Neuerungen. Infolgedessen können nun die immateriellen Vermögenswerte auch im deutschen Jahresabschluss entsprechend abgebildet werden. Dies stellt auch das (KMU-)Controlling vor neue Herausforderungen. Obwohl die Modernisierung des HGB als vollwertige Alternative zu den IFRS sowie dem IFRS for SMEs insbesondere für deutsche KMU gilt, ist diese Weiterentwicklung nicht als Paradigmenwechsel zu interpretieren. Das neue Bilanzrecht hält auch weiterhin an den Eckpfeilern des alten HGB sowie am bisherigen System der GoB fest. Gleichzeitig bleibt die HGB-Bilanz nach wie vor Grundlage für die steuerliche Gewinnermittlung und Grundlage für die Ausschüttungsbemessung. In the course of BilMoG the most far-reaching reform of German accounting law for more than 20 years entered into force. One of the most signicant innovations is the option to capitalize intangible assets which in turn implicates new challenges for controlling. It should be noted that, although the modernization of the Commercial Code is a credible alternative to the IFRS and the IFRS for SMEs, this development should not be interpreted as a paradigm shift. Keywords: bilanzierung von immateriellen vermögensgegenständen


2008 ◽  
Vol 6 (suppl_1) ◽  
Author(s):  
Zdeněk Petrášek ◽  
Petra Schwille

Fluctuations in fluorescence spectroscopy and microscopy have traditionally been regarded as noise—they lower the resolution and contrast and do not permit high acquisition rates. However, fluctuations can also be used to gain additional information about a system. This fact has been exploited in single-point microscopic techniques, such as fluorescence correlation spectroscopy and analysis of single molecule trajectories, and also in the imaging field, e.g. in spatio-temporal image correlation spectroscopy. Here, we discuss how fluctuations are used to obtain more quantitative information from the data than that given by average values, while minimizing the effects of noise due to stochastic photon detection.


2017 ◽  
Vol 24 (s3) ◽  
pp. 49-57 ◽  
Author(s):  
Ming Liu ◽  
Hengxu Liu ◽  
Xiongbo Zheng ◽  
Hailong Chen ◽  
Liquan Wang ◽  
...  

Abstract The wave energy, as a clean and non-pollution renewable energy sources, has become a hot research topic at home and abroad and is likely to become a new industry in the future. In this article, to effectively extract and maximize the energy from ocean waves, a vertical axisymmetric wave energy converter (WEC) was presented according to investigating of the advantages and disadvantages of the current WEC. The linear and quadratic equations in frequency-domain for the reactive controlled single-point converter property under regular waves condition are proposed for an efficient power take-off (PTO). A method of damping coefficients, theoretical added mass and exciting force are calculated with the analytical method which is in use of the series expansion of eigen functions. The loads of optimal reactive and resistive, the amplitudes of corresponding oscillation, and the width ratios of energy capture are determined approximately and discussed in numerical results.


Author(s):  
George Z. Forristall

Platform decks cover a reasonably large area compared to the size of a wave crest. Ocean waves are dispersive and directionally spread. As they propagate, their crest heights change. A platform deck samples those waves at many different locations. The maximum crest height over the area of a deck during a storm will naturally be greater than the maximum at a single point. The principle is clear but measurements are needed to confirm quantitative theoretical predictions. Such measurements were made in Marin wave basins using an array of 100 wave probes. At prototype scale, they covered an area of 100 by 100 m. Random directionally spread waves with prototype significant wave heights from 12 to 15 m and peak periods from 12 to 15 sec were generated and run through the array. Measurements were also made with pressure gauges mounted underneath a model platform deck placed at 11.5 and 13.0 m above still water level. Numerical simulations are used to find the maximum linear crest height expected over these areas. The second order enhancement of crest is accounted for by factoring the Gaussian maximum. Empirical fits to the simulations were found that can be used for most practical problems.


2021 ◽  
Author(s):  
Clarence Collins ◽  
Katherine Brodie

This Coastal and Hydraulics Engineering Technical Note (CHETN) describes the ability to measure the directional-frequency spectrum of sea surface waves based on the motion of a floating unmanned aerial system (UAS). The UAS used in this effort was custom built and designed to land on and take off from the sea surface. It was deployed in the vicinity of an operational wave sensor, the 8 m* array, at the US Army Engineer Research and Development Center (ERDC), Field Research Facility (FRF) in Duck, NC. While on the sea surface, an inertial navigation system (INS) recorded the response of the UAS to the incoming ocean waves. Two different INS signals were used to calculate one-dimensional (1D) frequency spectra and compared against the 8 m array. Two-dimensional (2D) directional-frequency spectra were calculated from INS data using traditional single-point-triplet analysis and a data adaptive method. The directional spectrum compared favorably against the 8 m array.


2020 ◽  
Vol 18 (2) ◽  
Author(s):  
Tatiana Krawczyńska-Zaucha

The last decades have witnessed constant changes andrefor ms in education in many countries. The paradox of these changes is that they require further changes and transformations and further reforms. Education systems do not correlate with the needs of humanity in the 21st century, nor with the emerging new world view. This article aims to examine education from the global  of the world of digitization in which we live and to find an answer to the question what is the purpose of education in the 21st century. From the analyses of different pedagogicaltre nds and philosophical assumptions underlying them, a conclusion will be drawn about the need for a philosophy open to new challenges in today’s educational reality in order to achieve this goal. This article will addresskey issues of the VUCA world concerning education such as digitization, educate to the unknown, the phenomenon of global teenagers and the development of robotics.


Sign in / Sign up

Export Citation Format

Share Document