Maximum Crest Heights Over an Area: Laboratory Measurements Compared to Theory

Author(s):  
George Z. Forristall

Platform decks cover a reasonably large area compared to the size of a wave crest. Ocean waves are dispersive and directionally spread. As they propagate, their crest heights change. A platform deck samples those waves at many different locations. The maximum crest height over the area of a deck during a storm will naturally be greater than the maximum at a single point. The principle is clear but measurements are needed to confirm quantitative theoretical predictions. Such measurements were made in Marin wave basins using an array of 100 wave probes. At prototype scale, they covered an area of 100 by 100 m. Random directionally spread waves with prototype significant wave heights from 12 to 15 m and peak periods from 12 to 15 sec were generated and run through the array. Measurements were also made with pressure gauges mounted underneath a model platform deck placed at 11.5 and 13.0 m above still water level. Numerical simulations are used to find the maximum linear crest height expected over these areas. The second order enhancement of crest is accounted for by factoring the Gaussian maximum. Empirical fits to the simulations were found that can be used for most practical problems.

Author(s):  
George Z. Forristall

Ocean waves are dispersive and directionally spread, changing size and shape as they propagate. Therefore the maximum crest height over an area in a given length of time will be larger than the maximum crest at a single point. Extreme crest heights are usually calculated from single point statistics, but the designer of a platform is really interested in the probability of a wave crest reaching any part of the deck area. Statistics for the maximum crest over an area have been developed using a combination of analytic theory and numerical simulations. The resulting crest heights are significantly higher than given by point statistics even for relatively small areas. On the other hand, only a small fraction of the deck may be inundated. That fraction can be estimated by a applying a two dimensional version of the NewWave method that finds the most probable shape of an extreme wave.


Author(s):  
Bas Buchner ◽  
George Forristall ◽  
Kevin Ewans ◽  
Marios Christou ◽  
Janou Hennig

The objective of the CresT JIP was ‘to develop models for realistic extreme waves and a design methodology for the loading and response of floating platforms’. Within this objective the central question was: ‘What is the highest (most critical) wave crest that will be encountered by my platform in its lifetime?’ Based on the presented results for long and short-crested numerical, field and basin results in the paper, it can be concluded that the statistics of long-crested waves are different than those of short-crested waves. But also short-crested waves show a trend to reach crest heights above second order. This is in line with visual observations of the physics involved: crests are sharper than predicted by second order, waves are asymmetric (fronts are steeper) and waves are breaking. Although the development of extreme waves within short-crested sea states still needs further investigation (including the counteracting effect of breaking), at the end of the CresT project the following procedure for taking into account extreme waves in platform design is recommended: 1. For the wave height distribution, use the Forristall distribution (Forristall, 1978). 2. For the crest height distribution, use 2nd order distribution as basis. 3. Both the basin and field measurements show crest heights higher than predicted by second order theory for steeper sea states. It is therefore recommended to apply a correction to the second order distribution based on the basin results. 4. Account for the sampling variability at the tail of the distribution (and resulting remaining possibility of higher crests than given by the corrected second order distribution) in the reliability analysis. 5. Consider the fact that the maximum crest height under a complete platform deck can be considerably higher than the maximum crest at a single point.


Author(s):  
Stefan G. Siegel ◽  
Casey Fagley ◽  
Marcus Römer ◽  
Thomas McLaughlin

The ability of a Cycloidal Wave Energy Converter (CycWEC) to cancel irregular deep ocean waves is investigated in a 1:300 scale wave tunnel experiment. A CycWEC consists of one or more hydrofoils attached equidistant to a shaft that is aligned parallel to the incoming waves. The entire device is fully submerged in operation. Wave cancellation requires synchronization of the rotation of the CycWEC with the incoming waves, as well as adjustment of the pitch angle of the blades in proportion to the wave height. The performance of a state estimator and controller that achieve this objective were investigated, using the signal from a resistive wave gage located up-wave of the CycWEC as input. The CycWEC model used for the present investigations features two blades that are adjustable in pitch in real time. The performance of the CycWEC for both a superposition of two harmonic waves, as well as irregular waves following a Bretschneider spectrum is shown. Wave cancellation efficiencies as determined by wave measurements of about 80% for the majority of the cases are achieved, with wave periods varying from 0.4s to 0.75s and significant wave heights of Hs ≈ 20mm. This demonstrates that the CycWEC can efficiently interact with irregular waves, which is in good agreement with earlier results obtained from numerical simulations.


Author(s):  
Sverre Haver ◽  
Kenneth Johannesen Eik ◽  
Einar Nygaard

A simplified reliability assessment is carried out for a generic jacket at 200m water depth. The purpose is to indicate the sensitivity of the annual failure probability to the selected airgap and current design profile. Two example cases are considered. For one case the required airgap is defined by the 10−4 wave crest height, while for the other the required airgap is defined from the 10−2 wave crest height plus an uncertainty margin taken to be 10% of the crest height. For both cases, the required minimum design base shear capacities are determined both using the 10-year current profile (earlier practice at the Norwegian Continental Shelf) and the associated current profile (i.e. the current profile which when used in combination with the n-year wave height yields the n-year load). The investigation shown herein clearly demonstrates that the chosen airgap is a crucial parameter regarding the annual probability of structural failure. It is, furthermore, demonstrated that if a wave-deck impact is required in order to fail the structure (which will be the case for most jackets), the current modeling is not very important. However, if the structure is designed such that failure may occur for wave heights not reaching deck level (either due to a highly utilized design or a very generous initial airgap), the current modeling (both in terms of selected design profile and joint description of wave height and current speed) may be far more important.


2020 ◽  
Vol 50 (2) ◽  
pp. 399-414 ◽  
Author(s):  
M. L. McAllister ◽  
T. S. van den Bremer

AbstractWave-following buoys are used to provide measurements of free surface elevation across the oceans. The measurements they produce are widely used to derive wave-averaged parameters such as significant wave height and peak period, alongside wave-by-wave statistics such as crest height distributions. Particularly concerning the measurement of extreme wave crests, these measurements are often perceived to be less accurate. We directly assess this through a side-by-side laboratory comparison of measurements made using Eulerian wave gauges and model wave-following buoys for randomly generated directionally spread irregular waves representative of extreme conditions on deep water. This study builds on the recent work of McAllister and van den Bremer (2019, https://doi.org/10.1175/JPO-D-19-0170.1), in which buoy measurements of steep directionally spread focused waves groups were considered. Our experiments confirm that the motion of a wave-following buoy should not significantly affect the measured wave crest statistics or spectral parameters and that the discrepancies observed for in situ buoy data are most likely a result of filtering. This filtering occurs when accelerations that are measured by the sensors within a buoy are converted to displacements. We present an approximate means of correcting the resulting measured crest height distributions, which is shown to be effective using our experimental data.


2021 ◽  
Vol 9 (12) ◽  
pp. 1452
Author(s):  
Pinyan Xu ◽  
Yunfei Du ◽  
Qiao Zheng ◽  
Zhumei Che ◽  
Jicai Zhang

Cold fronts, as one of the most frequent extreme weather events, can induce significant waves on the sea. This work analyzes the spatial and temporal variations in cold front events, especially the characteristics of wind directions during cold fronts in the East China Sea (ECS). The SWAN (Simulating Waves Nearshore) model is applied to simulating the waves induced by cold fronts. To calibrate the model, two typical cold front events were selected to simulate the corresponding waves in the ECS. The results indicate that the data misfit between the observed and modeled significant wave heights (SWH) is within a reasonable range. Idealized sensitivity experiments were then designed in order to analyze and discuss the responses of ocean waves to wind direction, swell distribution, maximum of significant wave heights (MSWH), and time lag during the cold fronts. The results show that the average MSWH in the ECS decreases monotonically with the deflection of wind direction from north-east to north-west, while specific nearshore sites do not conform to this pattern due to topography. The time series of SWH indicate that the action of the swells leads to a prolongation of the duration of catastrophic waves. This work investigates the temporal and spatial distribution characteristics of cold front-induced wind wave fields in offshore Zhejiang, which has important value for the study of the impact of cold fronts on the ocean as well as disaster prevention and mitigation efforts.


Author(s):  
AbdAlla M. AbdAlla ◽  
AbdAlla M. AbdAlla ◽  
Abkar A. Iraqi ◽  
Abkar A. Iraqi ◽  
Magdy M. Farag ◽  
...  

Sea level and wave data at Salalah coast (Oman) were used to simulate nearshore waves and current during the tropical cyclone ARB01 (9 May2002). STWAVE model (Steady State Spectral Wave) was applied for nearshore wave simulation, while M2D model ((Two-Dimensional Depth Averaged circulation model) was used to simulate nearshore current. The results of simulations (taking into account the mutual effects of both current and waves) showed that: The significant wave heights generally decrease from about 6m at the domain boundary to about 1 m close to the coast. The wave heights during the ebb period were higher than that during the flood period by about 1.5m. Along Salalah coast, higher waves were found along the eastern side of the domain. This is because the shielding effect of breakwater, which protect the western part of the coast from high waves. Relatively Strong current with values up to 1.5 ms-1 were found in the nearshore region during both ebb and flood periods. The M2D model results also showed cyclonic circulations during these periods which help in the renewal of harbor waters. Generally, the model results showed good agreements with observations in the investigated area.


2021 ◽  
Vol 13 (2) ◽  
pp. 195
Author(s):  
He Wang ◽  
Jingsong Yang ◽  
Jianhua Zhu ◽  
Lin Ren ◽  
Yahao Liu ◽  
...  

Sea state estimation from wide-swath and frequent-revisit scatterometers, which are providing ocean winds in the routine, is an attractive challenge. In this study, state-of-the-art deep learning technology is successfully adopted to develop an algorithm for deriving significant wave height from Advanced Scatterometer (ASCAT) aboard MetOp-A. By collocating three years (2016–2018) of ASCAT measurements and WaveWatch III sea state hindcasts at a global scale, huge amount data points (>8 million) were employed to train the multi-hidden-layer deep learning model, which has been established to map the inputs of thirteen sea state related ASCAT observables into the wave heights. The ASCAT significant wave height estimates were validated against hindcast dataset independent on training, showing good consistency in terms of root mean square error of 0.5 m under moderate sea condition (1.0–5.0 m). Additionally, reasonable agreement is also found between ASCAT derived wave heights and buoy observations from National Data Buoy Center for the proposed algorithm. Results are further discussed with respect to sea state maturity, radar incidence angle along with the limitations of the model. Our work demonstrates the capability of scatterometers for monitoring sea state, thus would advance the use of scatterometers, which were originally designed for winds, in studies of ocean waves.


Sign in / Sign up

Export Citation Format

Share Document