Three-Dimensional Mechanical Analysis of Flexible Jumper Installation

Author(s):  
Weidong Ruan ◽  
Ting Liu ◽  
Yong Bai ◽  
You Shi ◽  
Jianbo Fu ◽  
...  

This paper presents a simple method to study the installation process of a flexible jumper lowered into deep water by use of cables in a 3D space. Based on the catenary theory, the initial configuration of the installation system can be obtained easily. Then an iterative procedure, which uses force equilibrium and compatibility requirements as convergence criteria, is adopted to establish the final configuration considering the environmental loads. The internal force, bend radius and displacement of the flexible jumper are also obtained by finite-element discretization. The acquired results are compared with those derived from OrcaFlex finite-element model, in order to verify the accuracy and reliability of the proposed method. The influence on the minimum bend radius and maximum axial tension of the flexible jumper due to the difference between the lowering cable lengths, is also studied. The approach presented throughout this paper can offer some suggestions in regards to the installation of a flexible jumper in practical engineering.

2016 ◽  
Vol 710 ◽  
pp. 396-401 ◽  
Author(s):  
Ze Chao Zhang ◽  
Hong Bo Liu ◽  
Xiao Dun Wang ◽  
Xiang Yu Yan ◽  
Jing Hai Yu ◽  
...  

The upper part of Caofeidian coal storage was approximately hemispherical aluminum shell, covered with aluminum alloys plate. The capsule was made of aluminum alloys material, and its span was 125 meters. In the design, according to TEMCOR joint, we used the finite element software MIDAS to build the accurate geometry models and calculation models of aluminum alloys single layer latticed dome structures. By the combination of constant loads, live loads, snow load, wind load, temperature effect and other working conditions, we summarized the consumption of aluminum of the structures, and studied the structural internal force, structural deformation and structural stiffness. In addition, the X and Y two different direction seismic dynamic load was applied to the structure. The structural seismic performance under two kinds of modes were studied through the structure mode analysis of the vibration frequency. The vierendeel dome and single layer dome were controlled by the stability. ANSYS three-dimensional frame element model were set up, and the eigenvalue buckling analysis was carried out. By the geometrical nonlinear finite element method, combining with initial imperfections and material nonlinear, we found out the stability coefficient and the weak parts of the structure.


2012 ◽  
Vol 204-208 ◽  
pp. 382-388
Author(s):  
Bin Yang ◽  
Li Ying Wang

Abstract: This paper takes the project of the navigation lock in Jialing River as an example to study the lock head structure design layout, and build up a three-dimensional finite element model and carry on the nonlinear numerical calculations by using large finite software ABAQUS, and calculating the structural internal force of the lock head by the 3D nonlinear finite element method. This paper utilizes the numerical analysis method to analyze soil strength parameters. Combining with the FEM calculation data, the data-fit between the influencing factors and the side piers’ stress and displacement was found. This provides new thoughts to analyze the influence of multivariate interaction on the lock head structure.


2012 ◽  
Vol 256-259 ◽  
pp. 1296-1302 ◽  
Author(s):  
Yong Fang ◽  
Ge Cui ◽  
Bin Yang ◽  
Ya Peng Fu

Guandoushan tunnel in the Yibin - Luzhou expressway passes through fault fracture zone at the entrance. Structure internal force are complex during or after the construction. It challenges the safety during construction and operation. Plane finite element model was used to calculate internal force of primary support in the cases of different buried depths and three dimensional finite element model was applied to calculate stress distribution of primary support and secondary lining of the tunnel through fault fracture zone. The results indicate: with the increasing of buried depth, the loads acting on the structure will increase. It leads to uneven stress distribution in longitudinal direction, especially in the border of fault zone. It is suggested to increase the longitudinal reinforcement to improve overall longitudinal shearing resistance capacity and set deformation joint in the intersection to strengthen the longitudinal deformation ability of structure.


2019 ◽  
Vol 89 (19-20) ◽  
pp. 3916-3926
Author(s):  
Shanshan He ◽  
Longdi Cheng ◽  
Wenliang Xue ◽  
Zhong Lu ◽  
Liguo Chen

Regular cylinder metallic card clothing has a limited carding efficiency. As a result of the limited dimensions, any measurement between the cylinder and flat area is difficult to make. In this study, an approach is first proposed to simulate the flow field and a fiber finite-element model on the moving surface of the teeth and produce a new design of misaligned-teeth card clothing, with the aim of improving the carding efficiency. A comparison is made between regular and misaligned-teeth card clothing types with respect to flow field simulation and fiber mechanical properties. The results show that the force resulting from the tangential velocity between the cylinder and flat is as great as 1.86 × 10−3 N, sufficient to pull fiber out of tufts, and that the tangential velocity (from 3880 to 2500 mm/s) plays a major role in this area, as opposed to the axial velocity (from 0 to 190 mm/s). Through this comparison, the misalignment design can result in a different tangential velocity distribution from that of traditional card clothing, which helps fibers between two lines of teeth move into neighboring lines of teeth, thereby increasing the likelihood that fibers will be carded. For fiber mechanical analysis, different air forces are loaded on fibers. This comparison shows that for fibers in the channel, the misalignment can help fibers move toward the teeth. Therefore, this misaligned-teeth card clothing is thought to prove more effective in practice.


2014 ◽  
Vol 611-612 ◽  
pp. 273-279 ◽  
Author(s):  
Ismet Baran ◽  
Jesper Hattel ◽  
Remko Akkerman

In this study, a thermo-mechanical finite element model is developed to predict the spring-in of an industrially pultruded L-shaped profile made of glass/polyester composite. The resin curing kinetics are obtained from the differential scanning calorimetry (DSC) experiments. The development of the resin modulus is derived using the dynamic mechanical analysis (DMA) tests and the effective mechanical properties of the processing composite are calculated using a micromechanical model. The temperature and degree of cure distributions are obtained in a three dimensional (3D) thermo-chemical anlaysis using the finite element method (FEM). The process induced distortions are then calculated using these distributions in a 2D quasi-static mechanical analysis in which generalized plane strain elements are utilized. The predicted spring-in pattern at the end of the process is found to agree quite well with the one observed for the real pultruded parts in a commercial pultrusion company. In addition, the effects of the pulling speed and the part thickness on the spring-in formations are investigated using the proposed numerical simulation tool. It is found that the magnitude of the spring-in increases with an increase in the pulling speed and part thickness.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1152
Author(s):  
Rafał Nowak ◽  
Anna Olejnik ◽  
Hanna Gerber ◽  
Roman Frątczak ◽  
Ewa Zawiślak

The aim of this study was to compare the reduced stresses according to Huber’s hypothesis and the displacement pattern in the region of the facial skeleton using a tooth- or bone-borne appliance in surgically assisted rapid maxillary expansion (SARME). In the current literature, the lack of updated reports about biomechanical effects in bone-borne appliances used in SARME is noticeable. Finite element analysis (FEA) was used for this study. Six facial skeleton models were created, five with various variants of osteotomy and one without osteotomy. Two different appliances for maxillary expansion were used for each model. The three-dimensional (3D) model of the facial skeleton was created on the basis of spiral computed tomography (CT) scans of a 32-year-old patient with maxillary constriction. The finite element model was built using ANSYS 15.0 software, in which the computations were carried out. Stress distributions and displacement values along the 3D axes were found for each osteotomy variant with the expansion of the tooth- and the bone-borne devices at a level of 0.5 mm. The investigation showed that in the case of a full osteotomy of the maxilla, as described by Bell and Epker in 1976, the method of fixing the appliance for maxillary expansion had no impact on the distribution of the reduced stresses according to Huber’s hypothesis in the facial skeleton. In the case of the bone-borne appliance, the load on the teeth, which may lead to periodontal and orthodontic complications, was eliminated. In the case of a full osteotomy of the maxilla, displacements in the buccolingual direction for all the variables of the bone-borne appliance were slightly bigger than for the tooth-borne appliance.


2021 ◽  
Vol 11 (5) ◽  
pp. 2225
Author(s):  
Fu Wang ◽  
Guijun Shi ◽  
Wenbo Zhai ◽  
Bin Li ◽  
Chao Zhang ◽  
...  

The steel assembled support structure of a foundation pit can be assembled easily with high strength and recycling value. Steel’s performance is significantly affected by the surrounding temperature due to its temperature sensitivity. Here, a full-scale experiment was conducted to study the influence of temperature on the internal force and deformation of supporting structures, and a three-dimensional finite element model was established for comparative analysis. The test results showed that under the temperature effect, the deformation of the central retaining pile was composed of rigid rotation and flexural deformation, while the adjacent pile of central retaining pile only experienced flexural deformation. The stress on the retaining pile crown changed little, while more stress accumulated at the bottom. Compared with the crown beam and waist beam 2, the stress on waist beam 1 was significantly affected by the temperature and increased by about 0.70 MPa/°C. Meanwhile, the stress of the rigid panel was greatly affected by the temperature, increasing 78% and 82% when the temperature increased by 15 °C on rigid panel 1 and rigid panel 2, respectively. The comparative simulation results indicated that the bending moment and shear strength of pile 1 were markedly affected by the temperature, but pile 2 and pile 3 were basically stable. Lastly, as the temperature varied, waist beam 2 had the largest change in the deflection, followed by waist beam 1; the crown beam experienced the smallest change in the deflection.


Sign in / Sign up

Export Citation Format

Share Document