Numerical Study on Added Resistance Computations in Short Waves

Author(s):  
Xinshu Zhang ◽  
Kang Tian ◽  
Yunxiang You

Evaluation of added resistance in short waves is critical to the assessment of the global performance of a ship traveling in a seaway. In this paper, three methods of added resistance evaluation in short waves are briefly reviewed, including those proposed by Fujii & Takahashi [1], Faltinsen et al. [2], and Kuroda et al. [3]. Based on the experimental data collected by Kuroda et al., a new method is developed for the estimation of added resistance in short waves. The proposed method is validated by comparing the obtained numerical results with experimental data and other numerical solutions for different types of hulls, including the Wigley hull I, KVLCC2 hull, Series 60 hull with CB = 0.7, and the S-175 hull. The present study confirms that the developed method can well predict the added resistance in short waves and complement the three-dimensional Rankine panel method developed in a previous study focusing on intermediate and long waves.

Author(s):  
Anil K. Tolpadi ◽  
Mark E. Braaten

An important requirement in the design of an inlet duct of a turboprop engine is the ability to provide foreign object damage protection. A possible method for providing this protection is to include a bypass branch duct as an integral part of the main inlet duct. This arrangement would divert ingested debris away from the engine through the bypass. However, such an arrangement could raise the possibility of separated flow in the inlet, which in turn can increase pressure losses if not properly accounted for during the design. A fully elliptic three-dimensional body-fitted computational fluid dynamics (CFD) code based on pressure correction techniques has been developed that has the capability of performing multiple block grid calculations compatible with present day turboshaft and turboprop branched inlet ducts. Calculations are iteratively performed between sets of overlapping grids with one grid representing the main duct and a second grid representing the branch duct. Both the grid generator and the flow solver have been suitably developed to achieve this capability. The code can handle multiple branches in the flow. Using the converged flow field from this code, another program was written to perform a particle trajectory analysis. Numerical solutions were obtained on a supercomputer for a typical branched duct for which experimental flow and pressure measurements were also made. The flow separation zones predicted by the calculations were found to be in good agreement with those observed in the experimental tests. The total pressure recovery factors measured in the experiments were also compared with those obtained numerically. Within the limits of the grid resolution and the turbulence model, the agreement was found to be fairly good. In order to simulate the path of debris entering the duct, the trajectories of spherical particles of different sizes introduced at the inlet were determined.


Author(s):  
Azita Soleymani ◽  
Eveliina Takasuo ◽  
Piroz Zamankhan ◽  
William Polashenski

Results are presented from a numerical study examining the flow of a viscous, incompressible fluid through random packing of nonoverlapping spheres at moderate Reynolds numbers (based on pore permeability and interstitial fluid velocity), spanning a wide range of flow conditions for porous media. By using a laminar model including inertial terms and assuming rough walls, numerical solutions of the Navier-Stokes equations in three-dimensional porous packed beds resulted in dimensionless pressure drops in excellent agreement with those reported in a previous study (Fand et al., 1987). This observation suggests that no transition to turbulence could occur in the range of Reynolds number studied. For flows in the Forchheimer regime, numerical results are presented of the lateral dispersivity of solute continuously injected into a three-dimensional bounded granular bed at moderate Peclet numbers. Lateral fluid dispersion coefficients are calculated by comparing the concentration profiles obtained from numerical and analytical methods. Comparing the present numerical results with data available in the literature, no evidence has been found to support the speculations by others for a transition from laminar to turbulent regimes in porous media at a critical Reynolds number.


Author(s):  
Jae-Hoon Lee ◽  
Yonghwan Kim ◽  
Min-Guk Seo

In the present study, the added resistance of a containership in parametric roll motion is investigated. The numerical simulation is carried out using a three dimensional Rankine panel method along with the weakly nonlinear formulation. The added resistance is evaluated by a near-field method, namely, the direct integration of the 2nd-order pressure on a body surface. To calculate the component resulting from the large-amplitude roll motion, the higher-order restoring and Froude-Krylov forces on wetted hull surfaces are taken into account. With or without parametric roll in regular waves, the components of added resistance classified with respect to integral terms are compared to figure out the important of each term. Through the investigation, the correlation between the added resistance and parametric roll is derived from coupling and decoupling the components of roll motion and vertical motions.


2019 ◽  
Vol 30 (11) ◽  
pp. 1950083 ◽  
Author(s):  
Hossien Montaseri ◽  
Hossein Asiaei ◽  
Abdolhossein Baghlani ◽  
Pourya Omidvar

This paper deals with numerical study of flow field in a channel bend in presence of a lateral intake using three-dimensional numerical model SSIIM2. The effects of bend on the structure of the flow around the intake are investigated and compared with the experimental data. The tests are carried out in a U-shaped channel bend with a lateral intake. The intake is located at the outer bank of an 180∘ bend at position 115∘ with 45∘ diversion angle and the experimental data can be used to calibrate and validate numerical models. The results show that both the center-region and outer-bank cross-stream circulations are observed in the experiments while only the former is captured by the numerical model due to the limitations of the turbulence model. In the curved channel after the intake, both experimental and numerical results show another type of bi-cellular circulations in which clockwise center-region circulations and counterclockwise circulations near the inner bank and the free surface (inner-bank circulations) are captured. The study shows that the numerical model very satisfactorily predicts streamlines, velocity field and flow pattern in the channel and in vicinity of the intake. Investigation of flow pattern around lateral intake in channel bends shows that contrary to the case of flow diversion in straight channels, the width of the dividing stream surface near water surface level is greater than that of near bed level. Finally, the effects of position and diversion angle of the lateral intake, discharge ratio and upstream Froude number on the flow pattern are investigated.


2016 ◽  
Vol 62 (232) ◽  
pp. 335-347 ◽  
Author(s):  
AHMED M. ABDELRAZEK ◽  
ICHIRO KIMURA ◽  
YASUYUKI SHIMIZU

ABSTRACTIn nature, when hazardous geophysical granular flows (e.g. a snow avalanche) impact on an obstacle as they stream down a slope, rapid changes in flow depth, direction and velocity will occur. It is important to understand how granular material flows around such obstacles in order to enhance the design of defense structures. In this study, a three dimensional (3-D) Smoothed Particle Hydrodynamics (SPH) model is developed to simulate granular flow past different types of obstacles. The elastic–perfectly plastic model with implementation of the Mohr–Coulomb failure criterion is applied to simulate the material behavior, which describes the stress states of soil in the plastic flow regime. The model was validated by simulating the collapse of a 3-D column of sand with two different aspect ratios; the results showed that the SPH method is capable of simulating granular flow. The model is then applied to simulate the gravity-driven granular flow down an inclined surface obstructed by a group of columns with different spacing, a circular cylinder and a tetrahedral wedge. The numerical results are then compared with experimental results and two different numerical solutions. The good agreements obtained from these comparisons demonstrate that the SPH method may be a powerful method for simulating granular flow and can be extended to design protective structures.


2015 ◽  
Author(s):  
Hong Liang ◽  
Zhu Chuan ◽  
Miao Ping

Ship motions and its hydrodynamic coefficients are solved by three dimensional frequency domain potential theories with a translating and pulsating source distribution method. Furthermore, components of added wave resistance of ships advancing in waves due to the radiation and diffraction waves are obtained respectively. Added wave resistances of Wigley III hull and S175 containership with various forward speeds are carried out and analyzed in frequency domain. The numerical results are validated for the models by comparing them with experimental data. Its percentage of components of the total ship added wave resistance varying with frequency is investigated and discussed. The present method provides a rapid and efficient approach to predict added resistance of different types of ships in waves.


Author(s):  
D. C. Hong ◽  
T. B. Ha ◽  
K. H. Song

The added resistance of a ship was calculated using Maruo’s formula [1] involving the three-dimensional Kochin function obtained using the source and normal doublet distribution over the wetted surface of the ship. The density of the doublet distribution was obtained as the solution of the three-dimensional frequency-domain forward-speed Green integral equation containing the exact line integral along the waterline. Numerical results of the Wigley ship models II and III in head seas, obtained by making use of the inner-collocation 9-node second-order boundary element method have been compared with the experimental results reported by Journée [2]. The forward-speed hydrodynamic coefficients of the Wigley models have shown no irregular-frequencylike behavior. The steady disturbance potential due to the constant forward speed of the ship has also been calculated using the Green integral equation associated with the steady forward-speed free-surface Green function since the so-called mj-terms [3] appearing in the body boundary conditions contain the first and second derivatives of the steady potential over the wetted surface of the ship. However, the free-surface boundary condition was kept linear in the present study. The added resistances of the Wigley II and III models in head seas obtained using Maruo’s formula showing acceptable comparison with experimental results, have been presented. The added resistances in following seas obtained using Maruo’s formula have also been presented.


2012 ◽  
Vol 134 (3) ◽  
Author(s):  
Victoria Timchenko

This lecture is dedicated to the memory of Professor Eddie Leonardi, formerly International Heat Transfer Conference (IHTC-13) Secretary, who tragically died at an early age on December 14, 2008. Eddie Leonardi had a large range of research interests: he worked in both computational fluid dynamics/heat transfer and refrigeration and air-conditioning for over 25 years. However starting from his Ph.D. ‘A numerical study of the effects of fluid properties on natural convection’ awarded in 1984, one of his main passions has been natural convection and therefore the focus of this lecture will be on what Eddie Leonardi has achieved in numerical and experimental investigations of laminar natural convective flows. A number of examples will be presented which illustrate important difficulties of numerical calculations and experimental comparisons. Eddie Leonardi demonstrated that variable properties have important effects and significant differences occur when different fluids are used, so that dimensionless formulation is not appropriate when dealing with flows of fluids with significant changes in transport properties. Difficulties in comparing numerical solutions with either numerically generated data or experimental results will be discussed with reference to two-dimensional natural convection and three-dimensional Rayleigh–Bénard convection. For a number of years Eddie Leonardi was involved in a joint US-French-Australian research program—the MEPHISTO experiment on crystal growth—and studied the effects of convection on solidification and melting under microgravity conditions. Some results of this research will be described. Finally, some results of experimental and numerical studies of natural convection for building integrated photovoltaic (BIPV) applications in which Eddie Leonardi had been working in the last few years will be also presented.


Author(s):  
Heinrich Söding ◽  
Vladimir Shigunov ◽  
Thomas E. Schellin ◽  
Ould el Moctar

A new Rankine panel method and an extended Reynolds-Averaged Navier–Stokes (RANS) solver were employed to predict added resistance in head waves at different Froude numbers of a Wigley hull, a large tanker, and a modern containership. The frequency domain panel method, using Rankine sources as basic flow potentials, accounts for the interaction of the linear periodic wave-induced flow with the nonlinear steady flow caused by the ship's forward speed in calm water, including nonlinear free surface conditions and dynamic squat. Added resistance in waves is obtained by the pressure integration method. The time domain RANS solver, based on a finite volume method, is extended to solve the nonlinear equations of the rigid body six-degrees-of-freedom ship motions. The favorable comparison of the panel and RANS predictions demonstrated that the Rankine method is suitable to efficiently obtain reliable predictions of added resistance of ships in waves. Comparable model test predictions correlated less favorably, although the overall agreement was felt to be acceptable, considering the difficulties associated with the procedures to obtain accurate measurements.


Author(s):  
Christopher W. Robak ◽  
Amir Faghri ◽  
Karen A. Thole

Abstract Turbine rim cavities require an adequate supply of cooling purge flow to prevent hot gas ingestion from overheating metal components beneath the gas path airfoils. Purge flow is typically introduced into rim cavities through a labyrinth seal at the inner diameter of the cavity, or through conduits in the metal walls of the rim cavity. This numerical study will focus on purge flow introduced through axial holes in the stationary side of a turbine realistic rim cavity. Three dimensional Unsteady Reynolds-average Navier-Stokes (URANS) CFD modeling is utilized to model of cavity sealing effectiveness as a function of axial purge flow rate. CFD modeling is compared with experimental data from the test turbine in the Steady Thermal Aero Research Turbine (START). Results show good agreement with experimental data, especially at lower purge flow rates. Analytical depictions of the flow field setup in the rim cavity are provided, explaining trends observed in experimental data. Differences in sealing effectiveness trends between the upper and lower portions of the rim cavity are predicted by CFD modeling, adding insight to ingestion phenomena in turbine realistic rim cavities with complex geometry and flow leakage paths.


Sign in / Sign up

Export Citation Format

Share Document