Impact of Viscoelastic Characteristics of Oil Based Muds/Synthetic Based Muds on Cuttings Settling Velocities

Author(s):  
M. C. Altindal ◽  
E. Ozbayoglu ◽  
S. Miska ◽  
M. Yu ◽  
N. Takach ◽  
...  

Inaccurate calculation of settling and slip velocities of cuttings leads to inaccurate determination of cuttings concentration and, hence, borehole pressure, as well as inaccurate lag times. To minimize these problems, an understanding of the relation between drilling fluid characteristics and the cuttings transport process is essential. It is desirable for drilling fluids to form a gel structure to help cuttings transportation and suspension of solids. The gel structure development is proportional to increase in aging time. The increase in aging time yields higher shear stress responses at a constant rate of deformation to the drilling fluid sample. The gel structure development helps keep cuttings in suspension and shows a viscoelastic response to small deformations. Understanding these viscoelastic responses is important in rheological characterization and settling velocity prediction. Thus, viscoelastic drilling fluid characteristics should be investigated in depth to better estimate settling and slip velocities of cuttings and to increase cutting transport efficiency. The main focus of this project is to work on viscoelastic and time-dependent fluid characterization to identify the relation between rheological properties and settling velocities of cuttings. Rheological experiments were conducted using an Anton Paar Physica MCR 301 Rheometer. Three different drilling fluids, Water Based Mud (WBM), Oil Based Mud (OBM) and Synthetic Based Mud (SBM), are used for rheological and settling velocity experiments. Stress Overshoot Tests (SOTs) and Steady-Shear experiments were performed to investigate viscoelastic properties and gel structure of the fluids, and to examine time and temperature dependence of WBM, OBM and SBM. Information obtained from the viscoelastic and time-dependent fluid characterization tests was coupled with settling velocity data using both arbitrary shape of cuttings and spherical particles. A mathematical model that considers viscoelastic properties and time dependency of drilling fluids was developed to estimate settling and slip velocities of the cuttings. Comparisons between the proposed models and existing models based on standard rheological measurements were also done. The results show that the proposed model has good agreement with the experimental data.

Author(s):  
Tianshou Ma ◽  
Nian Peng ◽  
Ping Chen ◽  
Yang Liu

Supercharging in the vicinity of a borehole is an important factor that affects formation damage and drilling safety, and the filter cake growth process has a significant impact on supercharging in the vicinity of the borehole. However, existing models that predict pore pressure distribution overlook dynamic filter cake growth. Thus, an analytical supercharging model was developed that considers time-dependent filter cake effects, and this model was verified using a two-dimensional numerical model. The influences of filter cake, formation, and filtrate properties on supercharging were investigated systematically. The results indicate that time-dependent filter cake effects have significant influence on supercharging. Supercharging increases in the early stage but decreases over time because of the dynamic growth of filter cake, and the supercharging magnitude decreases along the radial direction. Because of filter cake growth, the magnitude of supercharging falls quickly across the filter cake, and the decreased magnitude of pore pressure caused by the filter cake increases. Supercharging in low-permeability formations is more obvious and the faster rate of filter cake growth, a lower filtrate viscosity and faster reduction rate of filter cake permeability can help to weaken supercharging. The order of importance of influencing factors on supercharging is overbalance pressure > formation permeability > formation porosity ≈ filtrate viscosity > filter cake permeability attenuation coefficient > initial filter cake permeability control ratio > filter cake growth coefficient > filter cake porosity. To alleviate supercharging in the vicinity of the borehole, adopting drilling fluids that allow a filter cake to form quickly, optimizing drilling fluid with a lower filtrate viscosity, keeping a smaller overbalance pressure, and precise operation at the rig site are suggested for low-permeability formations during drilling.


Author(s):  
Eric Cayeux ◽  
Amare Leulseged

Drilling fluids are visco-elastic materials, i.e. they behave as a viscous fluid when subject to a sufficient shear stress and like an elastic solid otherwise. Both their elastic and viscous properties are time-dependent, i.e. drilling fluids are thixotropic. Because of thixotropy, it takes a finite time before the effective viscosity of a drilling fluid attains an equilibrium when the fluid is subject to a change of shear rate. This effect is visible when one changes the applied shear rate in a rheometer, as the fluid will gradually adapt to the new shearing conditions. When the velocity of a drilling fluid changes, for instance due to a change in pump flow rate, movement of the drill string, or change of flow geometry, the fluid will exhibit a time-dependent response to the new shearing conditions, requiring a certain time to reach the new equilibrium condition. Unfortunately, the time-dependence of the rheological properties of drilling fluids are usually not measured during drilling operations and therefore it is difficult to estimate how thixotropy impacts pressure losses in drilling operations. For that reason, we have systematically measured the time-dependence of the rheological properties of several samples of water-based, oil-based and micronized drilling fluids with a scientific rheometer in order to capture how drilling fluids systems respond to variations of shear rates. Based on these measurements, we propose to investigate how one existing thixotropic model manages to predict the shear stress as a function of the shear rate while accounting for the shear history and gelling conditions. Then we propose a modified model that fits better, overall, with the measurements even though there are still noticeable discrepancies, especially when switching back to low shear rates.


Author(s):  
Arild Saasen ◽  
Helge Hodne

Throughout the last decades, the design and performance of the primary solid control devices have changed significantly. Some five decades ago, the circular motion shakers dominated the marked. These shakers operated by sending the drilling fluid downhill a vibrating screen. Thereafter appeared the elliptical motion or linear motion shakers where the cuttings particles were vibrated upwards a tilted screen. Onto these shakers, the use of double screen decks and finally triple screen decks became common. Within the last years also the vacuum devices appeared. Throughout the last two decades, there has been an effort to increase the g-forces on these shakers and the industry seems to have preferred the high g-force devices recently. Laboratory studies, however, has indicated that the very high g-forces are not necessary to perform proper solids control. Instead, different vibration modes interacts with the gel structure of the drilling fluid and remove yield stresses. Hence, the fluid becomes mobile for flow through the screen. Flow through screens is strongly dependent on the extensional properties within the drilling fluid rheology. Drilling fluids with high extensional viscosity seldom has a very strong gel structure, and are generally not affected equally much by vibrations. This explains why solids control is more difficult using a KCl/polymer water based drilling fluid than if using an oil based drilling fluid. This article focuses on describing how the drilling fluid rheological properties alter during primary solids control. It is based on theoretical analysis, rheological studies in the laboratory and finally on practical applications in two recent exploration drilling operations. The solids control efficiency resulting from using different screen configurations is outside the scope of this article, as this topic requires a higher focus on separation technology.


Author(s):  
John Lee ◽  
Ahmadi Tehrani ◽  
Steve Young ◽  
Christine Nguyen

Viscoelastic properties of drilling fluids are not often measured due to a lack of understanding of their impact on fluid performance as well as a lack of field equipment suitable for such measurements. A study has been conducted recently to evaluate the viscoelastic properties of xanthan gum and invert drilling fluids and their impact on barite suspension quality and rheology. Both a Brookfield YR-1 rheometer and a Bohlin Gemini 150 rheometer were used to generate data for comparison. The impact of viscoelasticity on steady-state rheology, thixotropy and shear thinning was evaluated using a multi-speed rheometer. A soon-to-be-adopted API recommended procedure was used to measure the barite sag tendency under dynamic conditions. Aqueous solutions of xanthan gum showed that viscoelasticity, shear thinning and thixotropy increased with increasing polymer concentration. When the solutions were weighed up with barite, they became more viscoelastic, slightly more thixotropic, but less shear thinning. Proper suspension of barite was observed at a xanthan gum concentration of 2 lb/bbl without any other additives. Compared to xanthan-barite suspensions, invert drilling fluids of similar density exhibited a greater viscoelasticity but less thixotropy and shear thinning. Treatment of invert drilling fluids with viscoelastic polymers resulted in a further enhancement of viscoelasticity and thixotropy, but a slight deterioration in shear thinning. Barite suspension quality showed a certain degree of correlation with viscoelasticity as well as steady-state rheology; however, these properties were temperature dependent for invert drilling fluids. Hydraulic analyses indicated that viscoelastic additives can impact fluid viscosity thus affecting pressure loss, equivalent circulating density and hole cleaning. Viscoelasticity enhancement may be used to improve barite suspension quality under certain conditions, but its impact on hydraulics must be carefully considered.


Author(s):  
Mesfin Belayneh ◽  
Bernt S. Aadnøy ◽  
Sharman Thomas

This paper presents the barite sagging phenomenon of four OBM systems having the same density, but different rheology properties. The investigations of barite sagging is based on dynamic sagging and viscoelasticity testing. The viscoelastic properties related to gel formation of the drilling fluids were investigated under amplitude and frequency sweeps. The study also tries to correlate the results obtained from dynamic sag with the dynamic viscoelastic properties of the drilling fluid and standard API rheology parameters. The results show that as the oil water ratio increases the drilling fluid rheology parameters such as lower shear yield stress (LSYS), yield stress (YS) and plastic viscosity (PV) parameters also increases. In addition, the viscoelastic loss and storage modulus decrease. From the viscoelasticity study, except for 90:10 OWR, it is observed that as the oil water ratio increase, the yield stress and the flow point also increases. The 90:10 OBM shows no viscoelasticity behavior. Comparing the extreme 60:40 and 90:10 OBMs (i.e. as OWR increase), the experimental result shows that the sagging index increases by 9%. The dynamic sagging factor decreases as the ratio of storage modulus to loss modulus increases (i.e. as OWR decrease). Except for high viscosity and hydraulics, the overall analysis of drilling fluids shows that the 60:40 OWR is the better in terms of sagging, filtrate loss and hole cleaning performance.


Author(s):  
Nada M. Sulaiman ◽  
Nada S. Al-Zubaidi

In drilling fluid program, selecting the drilling fluid that will reduce the lost time is the first objective, and will be economical regardless of its cost. The amount and type of solids in drilling fluid is the primary control of the rheological and filtration properties. Palygorskite clay (attapulgite) is an active solid that has ability to reactive with its environment and form a gel structure within a fluid and due to its stability in the presence of brines and electrolytes this type of clay is preferred for use. The aim of this study is to calculate the yield of clay for both types of local PAL in both fresh and salt water based mud. Determine the effect of aging time. Besides that, the effect of chloride sodium (NaCl) on rheological properties of drilling fluid by preparing salt water based drilling fluid with Bahr Al-Najaf PAL in three different procedures. The palygorskite claystone of Late Cretaceous age is present in the Western Desert within the Digma Formation. In this study, from two areas in Western Desert palygorskite were obtained, Bahr Al-Najaf and Trefawi. The results showed that, the clay yield of Bahr Al-Najaf PAL (49.54 bbl/ton), Trefawi PAL (57 bbl/ton), and commercial PAL (166.8 bbl/ton) in fresh water environment was higher than in salt water environment. As observed in this study, the clay yield of Bahr Al-Najaf PAL, Trefawi PAL, and commercial PAL in salt water environment were 37.9, 50.7, and 135.6 bbl/ ton respectively.  Poor yield of clay was obtained with Trefawi PAL (Grinding) so it was not used to prepare samples in this study. This experimental investigation, 16 hours aging time after preparation drilling fluids was applied.   


2019 ◽  
Vol 17 (1) ◽  
pp. 1435-1441
Author(s):  
Yonggui Liu ◽  
Yang Zhang ◽  
Jing Yan ◽  
Tao Song ◽  
Yongjun Xu

AbstractTraditional water-in-oil drilling fluids are limited by their shear thinning behavior. In this article, we propose the synthesis of a thermal resistant quaternary ammonium salt gemini surfactant DQGE-I. This surfactant was synthesized using monomers such as N,N-dimethyl-1,3-propanediamine, organic acids and epichlorohydrin, as well as blocking groups such as N-vinylpyrrolidone (NVP). The prepared surfactant exhibited various advantages over traditional surfactants, including excellent thermal stability, good emulsifying and wetting capability. The use of these surfactants was shown to improve the compactness of emulsifier molecules at the oil/water interface, as well as the overall emulsificaiton effect. Laboratory studies revealed that water-in-oil emulsions prepared using DQGE-I showed high emulsion breaking voltage, low liquid precipitation and small and uniformly distributed emulsion drops. Highly thixotropic water-in-oil drilling fluids based on DQGE-I showed low viscosity, high shear rate and thermal tolerance up to 260oC. Additionally, the proposed fluid was applied in 16 wells (including WS1-H2, GS3 and XS1-H8) in the Daqing Oilfield. Testing showed that DQGE-1 exhibited excellent rheological behavior and wall-building capability. The emulsion breaking voltage exceeded 1500 V, and the yield point/ plastic viscosity ratio exceeded 0.4. The use of this surfactant can help to solve problems such as high formation temperature and poor well wall stability.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1644
Author(s):  
Camilo Pedrosa ◽  
Arild Saasen ◽  
Bjørnar Lund ◽  
Jan David Ytrehus

The cuttings transport efficiency of various drilling fluids has been studied in several approaches. This is an important aspect, since hole cleaning is often a bottleneck in well construction. The studies so far have targeted the drilling fluid cuttings’ transport capability through experiments, simulations or field data. Observed differences in the efficiency due to changes in the drilling fluid properties and compositions have been reported but not always fully understood. In this study, the cuttings bed, wetted with a single drilling fluid, was evaluated. The experiments were performed with parallel plates in an Anton Paar Physica 301 rheometer. The results showed systematic differences in the internal friction behaviors between tests of beds with oil-based and beds with water-based fluids. The observations indicated that cutting beds wetted with a polymeric water-based fluid released clusters of particles when external forces overcame the bonding forces and the beds started to break up. Similarly, it was observed that an oil-based fluid wetted bed allowed particles to break free as single particles. These findings may explain the observed differences in previous cutting transport studies.


1969 ◽  
Vol 9 (04) ◽  
pp. 403-411 ◽  
Author(s):  
B.K. Sinha ◽  
Harvey T. Kennedy

Abstract Recommendations are made for obtaining consistent and reproducible test data on drilling fluids having identical composition. Previously, such a procedure has been difficult to accomplish even when the fluids were mixed in similar equipment. A survey of work in this area indicates that previous methods have been unsatisfactory because previous methods have been unsatisfactory because (1) the muds are extremely sensitive to the duration and violence of agitation during a normal mixing routine, and (2) gelling of the muds occurs before the properties can reach constant values. This gelling is caused by water evaporation resulting from the increase in temperature associated with the agitation. The work shows that these problems largely can be overcome by (1) agitating the constituents of the drilling fluid more vigorously, (2) maintaining a fairly constant temperature, and(3) Protecting the fluid from evaporation. When these steps are followed, the fluid properties approach asymptotic values that do not change by prolonged or accelerated agitation or by aging for a month. The time required to reach asymptotic values or a stabilized state is from 2 to 6 hours and is a function of the mud composition. Introduction Preparation of drilling fluids in the laboratory to determine their suitability to meet specific drilling requirements or to serve as a base fluid to evaluate the effectiveness of thinners, dispersants or other additives normally begins with combining measured quantities of the constituents and stirring them for a short time in a low-speed mixer. This is done to obtain a uniform mixture and to hydrate clays. Then the fluid is further agitated in a higher-speed device (Hamilton Beach mixer or Waring blender) to disperse more thoroughly and clay particles The biggest obstacle in the laboratory investigation of drilling fluids has been the lack of a method of producing a mixture by which reproducible results of the measured properties could be obtained. Numerous investigators have encountered this difficulty. Prior to 1929, density was the only property of mud that customarily was measured. The use of Wyoming bentonite on a large scale after 1929 was mainly responsible for the development of more elaborate testing procedures and for the application of the principles of colloid chemistry to the drilling fluids. Ambrose and Loomis in 1931 were among the first to recognize the plastic flow characteristics of drilling fluids, although Bingham in 1916 had observed The same phenomenon with dilute clay suspensions. Marsh introduced the Marsh funnel for field testing in 1931. By this time, non-Newtonian characteristics of drilling fluids were established. The Stormer and MacMichael viscometers were used to study the rheological properties of the fluids. In the 1930's and early 1940's, the work conducted by several investigators contributed toward a better understanding of drilling fluids. In the mid 1930's, fluid-loss and the associated mud-cake-forming properties of drilling fluids were recognized as important to the behavior of these fluids. The other properties of drilling fluids, including gel strength, pH, and sand content soon were recognized. In 1937, API published its first recommended procedure for test methods. Since that time, these procedures have been revised periodically. The latest edition, RP-13B, was published in 1961 However, in spite of the recognized need for a method of mixing that provides drilling fluids with stabilized properties, no such method previously has been described. SPEJ P. 403


Sign in / Sign up

Export Citation Format

Share Document