A Fundamental Research on Countermeasure of Disaster Mitigation and Impact Force to Cause Drifting Ship

Author(s):  
Kazuki Murata ◽  
Koichi Masuda ◽  
Tomoki Ikoma ◽  
Hiroaki Eto ◽  
Yasuhiro Aida ◽  
...  

The damage investigations that followed the Great East Japan Earthquake revealed that automobiles, shipping containers, and even ships themselves had been caught up in the resulting tsunami before being hurled into various port facilities, causing immense damage. The damage characteristics of such collisions must be an integral part of disaster mitigation measures aimed at reducing damage due to drifting ships. When considering the impact force of massive vessels on port facilities, it is necessary to take into account the changes in the drift velocity of the vessels due to waves reflected from the facilities and other coastal structures. In previous studies, the moving particle semi-implicit (MPS) method has been adopted to examine cascading tsunami flotsam damage by means of numerical simulations. In the present study, we use the MPS method to examine the drifting behavior and impact force of ships moored to an actual harbor, taking into account waves reflected from coastal area structures. Based on the results, we discuss the applicability of this method to disaster mitigation measures.

2021 ◽  
Author(s):  
Xin Su ◽  
Weiwei Shao ◽  
Jiahong Liu

In order to better formulate flood prevention and disaster mitigation measures and reduce the impact of urban flood on social development, it is necessary to conduct a scientific and accurate flood hazard assessment. The development of big data technology has brought new opportunities for flood hazard assessment. This study used a coupling model to simulate urban flood, and used the HR method to classify flood hazard. The dynamic change process of two types of Points-of-Interest(POIs) for catering services and living services under different flood hazard degrees were counted. The results showed that (1) In the northern part of the basin, mountainous, impervious ground and the lack of effective drainage channels have combined to cause more serious floods; (2) The flood hazard were mainly low-degree in the study area. Moderate flood hazard mainly occurred in farmland and built-up land. High-degree and extreme-degree flood hazard mainly occurred on both sides of rivers in the northwest of the basin; (3) Affected by the rainfall pattern, the number of POI affected by flood presented the characteristics of “three stages” under four flood hazard degrees; (4) The POIs of the two services was most seriously affected by the flood when the rainfall just stopped; (5) In terms of the proportion of POIs affected by floods, the impact of floods on the two industries is basically the same, but from the perspective of the number of POIs affected by floods, catering services will be more affected; (6) The spatial location of the POIs led to a slight difference in the trend of the number of POIs under high-degree and extreme-degree flood hazard. This study provided a new method for urban flood hazard dynamic assessment, which could help decision makers formulate more targeted flood prevention and disaster mitigation measures


Author(s):  
Li Peng ◽  
Jing Tan ◽  
Wei Deng ◽  
Ying Liu

Adjusting farming strategies are adaptive behaviors to cope with hazard risks. However, few studies have studied rural and remote mountain areas in China with little known about “farmers’ adaptation under the impact of geo-hazards”. Unlike traditional farmers’ behavioral adaptation studies, in this study, we focused on the resilience of farmers’ behavioral mechanisms to address local hazards such as geo-hazards. Our data were acquired through questionnaire responses (N = 516) in mountainous hazard-prone areas in Chongqing, China. The binary logit model and multinomial logit model were used to investigate the obstacles to different farming strategies and the determinants of adaptation strategy choice, focusing on the effects of disaster experience and social support on the adaptation strategy resilience. The results show that the most common adaptation strategy was adjusting crop varieties, and the largest adaptation obstacle was a lack of funds. Additionally, the age of the smallholder, farming acreage, agricultural income, social support, and disaster experience significantly increased the possibility of farmers adjusting their agricultural production. Of these, smallholder agricultural income, state disaster subsidy, the presence of disaster prevention construction, the smallholder’s property, and the presence of disaster-caused crop loss experience were the most important factors affecting a farmer’s adaptation strategy. In particular, farmers were more sensitive to disaster-caused property loss than to disaster-caused crop loss. This study can provide implications for the government to formulate disaster mitigation measures and for farming strategies at the smallholder level.


2015 ◽  
Vol 12 (2) ◽  
Author(s):  
Muhtar . ◽  
Arief Alihudien

INDEK KERENTANAN DAN AMPLIFIKASI  TANAH AKIBAT GEMPA DI  WILAYAH UNIVERSITAS MUHAMMADIYAH JEMBERVulnerability and Soil Amplification Index Due to Earthquake in The University Muhammadiyah JemberMuhtar1 & Arief Alihudien21Jurusan Teknik Sipil Fakultas Teknik – Universitas Muhammadiyah Jember2Jurusan Teknik Sipil Fakultas Teknik – Universitas Muhammadiyah JemberAlamat Korespondensi : Perum Taman Bambu B-01 Jember 68124Email : 1)[email protected] phenomena of earthquakes until now could not be predicted and the exact time it happened. Earthquake danger can not be avoided but its impact can be reduced through assessment activities characteristic earthquakes in a region that will be applied in the selection of methods and policies for disaster risk management. Residential areas adjacent to the source of the earthquake is an earthquake-prone area so, therefore it is necessary strategic steps to protect the public and disaster mitigation measures are an attempt to reduce or minimize the impact of loss or damage that may be caused by the disaster. The study was conducted to provide information to the seismic vulnerability using multicriteria analysis of conditions in the region include University of Muhammadiyah Jember dominant period land values   and the value of the amplification factor. The experiment was conducted using subsurface observation with mikrotremoR. From the results of geological studies research area is the basic constituent of igneous rocks such as tuff Argopuro. The results showed that the natural frequency of the soil and soil amplification is at 2,692 and 4,625 Hz. whereas soil vulnerability index value is equal to 7,946.Key Words : seismic, vulnerability, indexAbstrakFenomena alam gempa bumi sampai saat ini belum bisa diprediksi dan waktu yang tepat itu terjadi . Bahaya gempa tidak dapat dihindari namun dampaknya dapat dikurangi melalui kegiatan penilaian gempa bumi karakteristik di daerah yang akan diterapkan dalam pemilihan metode dan kebijakan untuk manajemen risiko bencana . Daerah pemukiman yang berdekatan dengan sumber gempa adalah daerah rawan gempa sehingga , oleh karena itu langkah-langkah strategis yang diperlukan untuk melindungi tindakan publik dan mitigasi bencana merupakan upaya untuk mengurangi atau meminimalkan dampak kerugian atau kerusakan yang mungkin disebabkan oleh bencana. Penelitian ini dilakukan untuk memberikan informasi kepada kerentanan seismik menggunakan analisis multikriteria kondisi di kawasan ini mencakup Universitas Muhammadiyah Jember nilai tanah periode dominan dan nilai faktor amplifikasi . Penelitian dilakukan dengan menggunakan observasi bawah permukaan dengan mikrotremoR. Dari hasil daerah penelitian studi geologi adalah konstituen dasar batuan beku seperti tuf Argopuro . Hasil penelitian menunjukkan bahwa frekuensi alami amplifikasi tanah dan tanah di 2,692 dan 4.625 Hz . sedangkan nilai indeks kerentanan tanah sama dengan 7946 .Kata Kunci : seismik , kerentanan , indeks


2021 ◽  
Vol 27 (1) ◽  
pp. 29-40
Author(s):  
Radianta Triatmadja ◽  
Warniyati Warniyati

Many coastal structures or structures in coastal areas were destroyed by a tsunami attack. Such destructions were due primarily to the fact that such structures were not designed to withstand a tsunami. Those which were designed to withstand tsunami force may also have been destroyed due to some damaging factors which were not included in the design. The damage of the coastal structures is one of the important factors that have caused casualties. Especially, when the destroyed structures were originally aimed to mitigate the area against tsunami, they may cause higher fatalities. Examples of such structures are sea walls in many parts of Japan which were destroyed by the 2011 tsunami. This paper discusses the important factors relevant to the damage of seawall as tsunami mitigation structure such as impact force due to tsunami front, hydrostatic force, and hydrodynamic force, debris force and scour due tsunami. The study was carried out based on literature about the damages of seawall as tsunami protection structures and laboratory experiment reports. The destructions to the structures were divided into three classifications namely instantaneous direct destruction due to impact and drag forces, slowly direct destruction due to drag force, and slowly indirect destruction due to scour. Finally, important aspects to be considered in the design of seawall as tsunamis protection were proposed.


2021 ◽  
Author(s):  
Yasuhiro Aida ◽  
Tomoki Ikoma ◽  
Koichi Masuda

Abstract When a large-scale tsunami occurs, structures in the coastal area will be destroyed by the impact of tsunami drifts. In the design of tsunami evacuation facilities and petroleum complexes, it is necessary to estimate the impact force of tsunami drift, which varies in size, shape and mass. Although some design equations have been proposed to estimate the impact force of tsunami drift, the impact force varies depending on various conditions such as the draft of the tsunami drifts, the attitude of the collision, the condition of the surrounding flow field, and the rigidity of the structure, etc. No reasonable design equation has been developed yet to meet all these conditions. Therefore, it is necessary to estimate the impact force of tsunami drift by water tank experiments and numerical simulations. In order to simulate the impact of a tsunami drift on a structure by numerical simulation, it is necessary to solve the coupling of fluid, floating object and structure. In this study, we have developed a simulation system that can simulate the impact force of a tsunami drift with the MPS method, which is a kind of particle method. This simulation system introduces an explicit method for pressure calculation, which allows for relatively large scale numerical calculations. In addition, the system is able to reproduce the deformation of structures as an elastic body due to the impact of tsunami drift. In particular, we have introduced an analytical method that allows us to set the computational time step that satisfy the CFL conditions for elastic and fluid particles, respectively, for stable simulation even when there is a large difference between the velocity of fluid particles and the velocity of structural particles caused by elastic waves. As a result of the comparison of the impact force on the cantilevered beam of the tsunami drift with the simulation and the water tank test, the deformation of the structure at the time of impact was reproduced with more than 90% accuracy.


Author(s):  
Hideki Kaida ◽  
Naoto Kihara ◽  
Daisuke Takabatake

Tsunami, hurricane storm surge, and waves generate debris such as shipping containers, wood logs, and vehicles. Impact forces exerted on structures in the inundation zone by such debris might result in severe structural damage of structures. Thus, reliable prediction of debris impact force is essential for the safe design and risk assessment of structures in the inundation zone. In this study, we carried out full-scale air-borne and flood-borne vehicle impact experiments. The experimental results enable characterization of the vehicle impact and prove the applicability of a theoretical equation (Haehnel and Daly, (2004)) in which the impact force of debris is estimated by using the impact velocity, axial stiffness, and mass of the debris. In addition, by analyzing NHTSA (National Highway Traffic Safety Administration)’s experimental data, a list of axial stiffness for various types of vehicles was constructed, which is important in predicting the flood-borne vehicle impact force.


2013 ◽  
Vol 8 (4) ◽  
pp. 594-604 ◽  
Author(s):  
Takashi Tomita ◽  
◽  
Taro Arikawa ◽  
Tadashi Asai ◽  

The tsunami following the 2011 off the Pacific Coast of Tohoku Earthquake devastated ports in the Tohoku and Kanto regions of Japan. Even Iwate Prefecture in Tohoku, which had experienced many tsunami disasters and prepared tsunami disaster mitigation measures, incurred great devastation because the tsunami was both higher than any historically recorded tsunamis and than any estimated tsunamis for disaster management. The tsunami-induced inundation destroyed many of wooden houses widely found in the area. Many ships and boats at sea were displaced by the tsunami, with some vessels colliding with others and port facilities such as cargo handling equipment and quay walls being damaged. Much debris was generated and disrupted rescue and restoration activities in the disaster aftermath. Port devastation caused stagnation in logistics and industrial operations, negatively impacting on residents’ lives and industrial activities in the disaster aftermath. There was a positive lesson that breakwaters and seawalls damaged by the tsunami reduced tsunami impacts behind them. Ports should be robust and resilient against possible tsunami hazards, considering measures for worst-case earthquake and tsunami scenarios.


2019 ◽  
Vol 7 (2) ◽  
pp. 205-213
Author(s):  
Yong-Doo Kim ◽  
Seung-Jae Lim ◽  
Hyun-Ung Bae ◽  
Kyoung-Ju Kim ◽  
Chin-Ok Lee ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
Lukman Olagoke ◽  
Ahmet E. Topcu

BACKGROUND COVID-19 represents a serious threat to both national health and economic systems. To curb this pandemic, the World Health Organization (WHO) issued a series of COVID-19 public safety guidelines. Different countries around the world initiated different measures in line with the WHO guidelines to mitigate and investigate the spread of COVID-19 in their territories. OBJECTIVE The aim of this paper is to quantitatively evaluate the effectiveness of these control measures using a data-centric approach. METHODS We begin with a simple text analysis of coronavirus-related articles and show that reports on similar outbreaks in the past strongly proposed similar control measures. This reaffirms the fact that these control measures are in order. Subsequently, we propose a simple performance statistic that quantifies general performance and performance under the different measures that were initiated. A density based clustering of based on performance statistic was carried out to group countries based on performance. RESULTS The performance statistic helps evaluate quantitatively the impact of COVID-19 control measures. Countries tend show variability in performance under different control measures. The performance statistic has negative correlation with cases of death which is a useful characteristics for COVID-19 control measure performance analysis. A web-based time-line visualization that enables comparison of performances and cases across continents and subregions is presented. CONCLUSIONS The performance metric is relevant for the analysis of the impact of COVID-19 control measures. This can help caregivers and policymakers identify effective control measures and reduce cases of death due to COVID-19. The interactive web visualizer provides easily digested and quick feedback to augment decision-making processes in the COVID-19 response measures evaluation. CLINICALTRIAL Not Applicable


Sign in / Sign up

Export Citation Format

Share Document