Offloading Operability of Small Scale AG FLNG With Side-by-Side Moored Small Scale LNG Carrier in Offshore West Africa

Author(s):  
Mun-sung Kim ◽  
Eric Morilhat ◽  
X. C. Nguyen ◽  
Bo-hee Kim ◽  
Jung-moon Jang ◽  
...  

This study describes one of the technical solutions for Small Scale FLNG (SSFLNG)[1] development specifically designed to monetize Associated Gas (AG) of producing oil fields located within convenient distance of an existing LNG Plant or Port with LNG storage facility. Limited production capacity combined with short range small scale LNG carriers (SSLNGC), provide a cost effective means for LNG production. Ship to ship off-loading operation by loading arm has been considered in AG SSFLNG. Produced LNG is to be off-loaded from the SSFLNG to side-by-side moored SSLNGC. Relative motion and dynamic load acting on loading arm system in side-by-side mooring arrangement is one of key factors to estimate the offloading operability of the AG SSFLNG. In this paper, a numerical two-body motion analysis for the side-by-side moored SSFLNG in frequency- and time-domain is carried out. Also, the basic engineering work is carried out for the marine loading arms (MLA). Since the MLA reacts approximately as a linear system, it is calculated by a full spectral RAO analysis for each of the worst load cases issued from the spectral ranking. All loads and stresses inside the MLA are verified in accordance with EN1474-1[2] for the situations identified in the previous step. A high level fatigue analysis focused on the cryogenic swivel joints is carried out. Based on the numerical calculation for relative motion in side-by-side moored FLNG, we have been performed structural assessment for MLA in several environment conditions. The structural integrity of both MLA and the LNGC manifold are validated during offloading for Offshore West Africa.

Author(s):  
X. C. Nguyen ◽  
Komla Miheaye ◽  
Mun-gyu Kim ◽  
Howard Newman ◽  
Dong-hoon Yoo ◽  
...  

This study describes a FLNG specifically designed to monetize Associated Gas (AG) of producing oil fields located within convenient distance of an existing LNG Plant or Port with LNG storage facility. Limited production capacity combined with short range small capacity shuttles and limited LNG storage capacity, provide a cost effective means for LNG production. This FLNG is designed to service an existing industry and does not require development of stranded gas discoveries.


2013 ◽  
Vol 10 (11) ◽  
pp. 14535-14555
Author(s):  
L. Chen ◽  
Y. Zhong ◽  
G. Wei ◽  
Z. Shen

Abstract. The identification of priority management areas (PMAs) is essential for the control of non-point source (NPS) pollution, especially for a large-scale watershed. However, previous studies have typically focused on small-scale catchments adjacent to specific assessment points; thus, the interactions between multiple river points remain poorly understood. In this study, a multiple-assessment-point PMA (MAP-PMA) framework was proposed by integrating the upstream sources and the downstream transport aspects of NPS pollution. Based on the results, the integration of the upstream input changes was vital for the final PMAs map, especially for downstream areas. Contrary to conventional wisdom, this research recommended that the NPS pollutants could be best controlled among the upstream high-level PMAs when protecting the water quality of the entire watershed. The MAP-PMA framework provided a more cost-effective tool for the establishment of conservation practices, especially for a large-scale watershed.


2021 ◽  
Author(s):  
Tuanjun Hu ◽  
Lorna Taylor ◽  
Adrian Sherman ◽  
Christian Keambou Tiambo ◽  
Steven J Kemp ◽  
...  

Chickens are an important resource for smallholder farmers who raise locally adapted, genetically distinct breeds for eggs and meat. The development of efficient reproductive technologies to conserve and regenerate chicken breeds safeguards existing biodiversity and secures poultry genetic resources for climate resilience, biosecurity, and future food production. The majority of the over 1600 breeds of chicken are raised in low and lower to middle income countries (LMICs) under resource limited, small scale production systems, which necessitates a low tech, cost effective means of conserving diversity is needed. Here, we validate a simple biobanking technique using cryopreserved embryonic chicken gonads. The gonads are quickly isolated, visually sexed, pooled by sex, and cryopreserved. Subsequently, the stored material is thawed and dissociated before injection into sterile host chicken embryos. By using pooled GFP and RFP-labelled donor gonadal cells and Sire Dam Surrogate (SDS) mating, we demonstrate that chicks deriving entirely from male and female donor germ cells are hatched. This technology will enable ongoing efforts to conserve chicken genetic diversity for both commercial and small holder farmers, and to preserve existing genetic resources at poultry research facilities.


2016 ◽  
Vol 56 (2) ◽  
pp. 612 ◽  
Author(s):  
James Brown ◽  
Chiew Yen Law ◽  
Katherine Fielden ◽  
Ceri-Sian Dee ◽  
Neil Pollock

Five percent of the world’s gas supply is wasted by being flared or vented into the atmosphere, leading to a huge loss of potential revenue, not to mention a significant impact on the environment. This is equivalent to 150 billion cubic metres of natural gas per year and the release of 400 million metric tons of CO2 equivalent. The industry does this for a variety of valid reasons, including well testing, emergencies, commissioning, maintenance, or simply because an economic solution for capturing and using the gas has not been discovered. Capture of flared gas, therefore, presents an economic and environmentally beneficial opportunity to create new value chains that can benefit not only the industry but also people’s quality of life. This extended abstract draws on a recent DNV GL project to assess existing and future technologies and concepts for capturing small volumes of associated gas that are normally flared from oil fields, both onshore and offshore. The following four technology options that can be used to capture associated gas, convert it, and either utilise the product onsite or transport it to market for consumption are considered. Using more cost-effective ways of transporting natural gas where there is no existing pipeline. Converting gas into products with a higher economic value through chemical processes. Novel concepts—bringing the solution closer to the source of gas flaring. Other solutions. The extended abstract then focuses on cost-effective ways of transporting gas, in particular the use of micro-LNG solutions


2014 ◽  
Vol 18 (4) ◽  
pp. 1265-1272 ◽  
Author(s):  
L. Chen ◽  
Y. Zhong ◽  
G. Wei ◽  
Z. Shen

Abstract. The identification of priority management areas (PMAs) is essential for the control of non-point-source (NPS) pollution, especially for a large-scale watershed. However, previous studies have typically focused on small-scale catchments adjacent to specific assessment points; thus, the interactions between multiple river points remain poorly understood. In this study, a multiple-assessment-point PMA (MAP-PMA) framework was proposed by integrating the upstream sources and the downstream transport aspects of NPS pollution. Daning River watershed was taken as a case study in this paper, which has demonstrated that the integration of the upstream input changes was vital for the final PMAs map, especially for downstream areas. Contrary to conventional wisdom, this research recommended that the NPS pollutants could be best controlled among the upstream high-level PMAs when protecting the water quality of the entire watershed. The MAP-PMA framework provided a more cost-effective tool for the establishment of conservation practices, especially for a large-scale watershed.


2016 ◽  
Vol 20 (2) ◽  
pp. 194-207 ◽  
Author(s):  
Gerald Wistow ◽  
Margaret Perkins ◽  
Martin Knapp ◽  
Annette Bauer ◽  
Eva-Maria Bonin

Circles of Support aim to enable people with learning disabilities (and others) to live full lives as part of their communities. As part of a wider study of the economic case for community capacity building conducted from 2012 to 2014, we conducted a mixed methods study of five Circles in North West England. Members of these Circles were supporting adults with moderate to profound learning disabilities and provided accounts of success in enabling the core member to live more independent lives with improved social care outcomes within cost envelopes that appeared to be less than more traditional types of support. The Circles also reported success in harnessing community resources to promote social inclusion and improve well-being. This very small-scale study can only offer tentative evidence but does appear to justify more rigorous research into the potential of Circles to secure cost-effective means of providing support to people with learning disabilities than the alternative, which in most cases would have been a long-term residential care placement.


2021 ◽  
Vol 9 ◽  
Author(s):  
Liang Wang ◽  
Ying Cheng ◽  
Ravi Naidu ◽  
Peter Gell ◽  
Mark Bowman

Traditional contaminated site characterisation approaches are time-consuming, labour-intensive, and demand a high level of expertise. This case study provides a rapid field-based solution to investigating a VOC contaminated site and its vapour incursion by combining soil vapour and groundwater survey. To fully assess the volatile organic compound (VOC) distribution in a contaminated site, a number of self-developed soil vapour sampling probes (SVSPs) were placed vertically at different locations in a grid with different depths. Hence, 3D subsurface contour maps for VOC concentrations in soil vapour can be obtained and used to help identify hot spots and the migration patterns of VOCs. This SVSP is “easy-to-install” in the field and a cost-effective solution for rapid assessment of soil vapour samples. The SVSPs can be installed both vertically and horizontally. If there is a requirement to take soil vapour samples beneath an existing building from a potential contamination source zone, SVSPs can be horizontally installed beneath the building without compromising its structural integrity. In addition, to ascertain the correct groundwater channels that are likely to carry contaminants from a potential source zone, an electrical resistivity tomography technique was employed to provide the preliminary information for groundwater delineation in a complex groundwater channel network.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (09) ◽  
pp. 507-515 ◽  
Author(s):  
David Skuse ◽  
Mark Windebank ◽  
Tafadzwa Motsi ◽  
Guillaume Tellier

When pulp and minerals are co-processed in aqueous suspension, the mineral acts as a grinding aid, facilitating the cost-effective production of fibrils. Furthermore, this processing allows the utilization of robust industrial milling equipment. There are 40000 dry metric tons of mineral/microfbrillated (MFC) cellulose composite production capacity in operation across three continents. These mineral/MFC products have been cleared by the FDA for use as a dry and wet strength agent in coated and uncoated food contact paper and paperboard applications. We have previously reported that use of these mineral/MFC composite materials in fiber-based applications allows generally improved wet and dry mechanical properties with concomitant opportunities for cost savings, property improvements, or grade developments and that the materials can be prepared using a range of fibers and minerals. Here, we: (1) report the development of new products that offer improved performance, (2) compare the performance of these new materials with that of a range of other nanocellulosic material types, (3) illustrate the performance of these new materials in reinforcement (paper and board) and viscosification applications, and (4) discuss product form requirements for different applications.


2011 ◽  
Vol 39 (3) ◽  
pp. 193-209 ◽  
Author(s):  
H. Surendranath ◽  
M. Dunbar

Abstract Over the last few decades, finite element analysis has become an integral part of the overall tire design process. Engineers need to perform a number of different simulations to evaluate new designs and study the effect of proposed design changes. However, tires pose formidable simulation challenges due to the presence of highly nonlinear rubber compounds, embedded reinforcements, complex tread geometries, rolling contact, and large deformations. Accurate simulation requires careful consideration of these factors, resulting in the extensive turnaround time, often times prolonging the design cycle. Therefore, it is extremely critical to explore means to reduce the turnaround time while producing reliable results. Compute clusters have recently become a cost effective means to perform high performance computing (HPC). Distributed memory parallel solvers designed to take advantage of compute clusters have become increasingly popular. In this paper, we examine the use of HPC for various tire simulations and demonstrate how it can significantly reduce simulation turnaround time. Abaqus/Standard is used for routine tire simulations like footprint and steady state rolling. Abaqus/Explicit is used for transient rolling and hydroplaning simulations. The run times and scaling data corresponding to models of various sizes and complexity are presented.


Sign in / Sign up

Export Citation Format

Share Document