The Impact of Climate Change on the Long-Term Response of Offshore Structures: A Study Case

Author(s):  
Irvin Alberto Mosquera ◽  
Luis Volnei Sudati Sagrilo ◽  
Paulo Maurício Videiro

Abstract This paper discusses the influence of the climate change in the long-term response of offshore structures. The case studied is a linear single-degree-of-freedom (SDOF) system under environmental load wave characterized by the JONSWAP spectrum. The wave parameter data used in the analyses were obtained from running the wind wave WaveWatch III with wind field input data derived from two Global Climate Models (GCMs): HadGEM2-ES and MRI-CGCM3 considering historical and future greenhouse emissions scenarios. The study was carried out for two locations: one in the North Atlantic and the other in Brazilian South East Coast. Environmental contours have been used to estimate the extreme long-term response. The results suggest that climate change would affect the structure response and its impact is highly depend on the structure location, the global climate model and the greenhouse emissions scenario selected.

2016 ◽  
Vol 155 (3) ◽  
pp. 407-420 ◽  
Author(s):  
R. S. SILVA ◽  
L. KUMAR ◽  
F. SHABANI ◽  
M. C. PICANÇO

SUMMARYTomato (Solanum lycopersicum L.) is one of the most important vegetable crops globally and an important agricultural sector for generating employment. Open field cultivation of tomatoes exposes the crop to climatic conditions, whereas greenhouse production is protected. Hence, global warming will have a greater impact on open field cultivation of tomatoes rather than the controlled greenhouse environment. Although the scale of potential impacts is uncertain, there are techniques that can be implemented to predict these impacts. Global climate models (GCMs) are useful tools for the analysis of possible impacts on a species. The current study aims to determine the impacts of climate change and the major factors of abiotic stress that limit the open field cultivation of tomatoes in both the present and future, based on predicted global climate change using CLIMatic indEX and the A2 emissions scenario, together with the GCM Commonwealth Scientific and Industrial Research Organisation (CSIRO)-Mk3·0 (CS), for the years 2050 and 2100. The results indicate that large areas that currently have an optimum climate will become climatically marginal or unsuitable for open field cultivation of tomatoes due to progressively increasing heat and dry stress in the future. Conversely, large areas now marginal and unsuitable for open field cultivation of tomatoes will become suitable or optimal due to a decrease in cold stress. The current model may be useful for plant geneticists and horticulturalists who could develop new regional stress-resilient tomato cultivars based on needs related to these modelling projections.


2021 ◽  
Author(s):  
Thedini Asali Peiris ◽  
Petra Döll

<p>Unlike global climate models, hydrological models cannot simulate the feedbacks among atmospheric processes, vegetation, water, and energy exchange at the land surface. This severely limits their ability to quantify the impact of climate change and the concurrent increase of atmospheric CO<sub>2</sub> concentrations on evapotranspiration and thus runoff. Hydrological models generally calculate actual evapotranspiration as a fraction of potential evapotranspiration (PET), which is computed as a function of temperature and net radiation and sometimes of humidity and wind speed. Almost no hydrological model takes into account that PET changes because the vegetation responds to changing CO<sub>2</sub> and climate. This active vegetation response consists of three components. With higher CO<sub>2</sub> concentrations, 1) plant stomata close, reducing transpiration (physiological effect) and 2) plants may grow better, with more leaves, increasing transpiration (structural effect), while 3) climatic changes lead to changes in plants growth and even biome shifts, changing evapotranspiration. Global climate models, which include dynamic vegetation models, simulate all these processes, albeit with a high uncertainty, and take into account the feedbacks to the atmosphere.</p><p>Milly and Dunne (2016) (MD) found that in the case of RCP8.5 the change of PET (computed using the Penman-Monteith equation) between 1981- 2000 and 2081-2100 is much higher than the change of non-water-stressed evapotranspiration (NWSET) computed by an ensemble of global climate models. This overestimation is partially due to the neglect of active vegetation response and partially due to the neglected feedbacks between the atmosphere and the land surface.</p><p>The objective of this paper is to present a simple approach for hydrological models that enables them to mimic the effect of active vegetation on potential evapotranspiration under climate change, thus improving computation of freshwater-related climate change hazards by hydrological models. MD proposed an alternative approach to estimate changes in PET for impact studies that is only a function of the changes in energy and not of temperature and achieves a good fit to the ensemble mean change of evapotranspiration computed by the ensemble of global climate models in months and grid cells without water stress. We developed an implementation of the MD idea for hydrological models using the Priestley-Taylor equation (PET-PT) to estimate PET as a function of net radiation and temperature. With PET-PT, an increasing temperature trend leads to strong increases in PET. Our proposed methodology (PET-MD) helps to remove this effect, retaining the impact of temperature on PET but not on long-term PET change.</p><p>We implemented the PET-MD approach in the global hydrological model WaterGAP2.2d. and computed daily time series of PET between 1981 and 2099 using bias-adjusted climate data of four global climate models for RCP 8.5. We evaluated, computed PET-PT and PET-MD at the grid cell level and globally, comparing also to the results of the Milly-Dunne study. The global analysis suggests that the application of PET-MD reduces the PET change until the end of this century from 3.341 mm/day according to PET-PT to 3.087 mm/day (ensemble mean over the four global climate models).</p><p>Milly, P.C.D., Dunne K.A. (2016). DOI:10.1038/nclimate3046.</p>


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2130 ◽  
Author(s):  
Zhu ◽  
Zhang ◽  
Wu ◽  
Qi ◽  
Fu ◽  
...  

This paper assesses the uncertainties in the projected future runoff resulting from climate change and downscaling methods in the Biliu River basin (Liaoning province, Northeast China). One widely used hydrological model SWAT, 11 Global Climate Models (GCMs), two statistical downscaling methods, four dynamical downscaling datasets, and two Representative Concentration Pathways (RCP4.5 and RCP8.5) are applied to construct 22 scenarios to project runoff. Hydrology variables in historical and future periods are compared to investigate their variations, and the uncertainties associated with climate change and downscaling methods are also analyzed. The results show that future temperatures will increase under all scenarios and will increase more under RCP8.5 than RCP4.5, while future precipitation will increase under 16 scenarios. Future runoff tends to decrease under 13 out of the 22 scenarios. We also found that the mean runoff changes ranging from −38.38% to 33.98%. Future monthly runoff increases in May, June, September, and October and decreases in all the other months. Different downscaling methods have little impact on the lower envelope of runoff, and they mainly impact the upper envelope of the runoff. The impact of climate change can be regarded as the main source of the runoff uncertainty during the flood period (from May to September), while the impact of downscaling methods can be regarded as the main source during the non-flood season (from October to April). This study separated the uncertainty impact of different factors, and the results could provide very important information for water resource management.


2018 ◽  
Author(s):  
Martha M. Vogel ◽  
Jakob Zscheischler ◽  
Sonia I. Seneviratne

Abstract. The frequency and intensity of climate extremes is expected to increase in many regions due to anthropogenic climate change. In Central Europe extreme temperatures are projected to change more strongly than global mean temperatures and soil moisture-temperature feedbacks significantly contribute to this regional amplification. Because of their strong societal, ecological and economic impacts, robust projections of temperature extremes are needed. Unfortunately, in current model projections, temperature extremes in Central Europe are prone to large uncertainties. In order to understand and potentially reduce uncertainties of extreme temperatures projections in Europe, we analyze global climate models from the CMIP5 ensemble for the business-as-usual high-emission scenario (RCP8.5). We find a divergent behavior in long-term projections of summer precipitation until the end of the 21st century, resulting in a trimodal distribution of precipitation (wet, dry and very dry). All model groups show distinct characteristics for summer latent heat flux, top soil moisture, and temperatures on the hottest day of the year (TXx), whereas for net radiation and large-scale circulation no clear trimodal behavior is detectable. This suggests that different land-atmosphere coupling strengths may be able to explain the uncertainties in temperature extremes. Constraining the full model ensemble with observed present-day correlations between summer precipitation and TXx excludes most of the very dry and dry models. In particular, the very dry models tend to overestimate the negative coupling between precipitation and TXx, resulting in a too strong warming. This is particularly relevant for global warming levels above 2 °C. The analysis allows for the first time to substantially reduce uncertainties in the projected changes of TXx in global climate models. Our results suggest that long-term temperature changes in TXx in Central Europe are about 20 % lower than projected by the multi-model median of the full ensemble. In addition, mean summer precipitation is found to be more likely to stay close to present-day levels. These results are highly relevant for improving estimates of regional climate-change impacts including heat stress, water supply and crop failure for Central Europe.


2020 ◽  
Author(s):  
Paul Kim ◽  
Daniel Partridge ◽  
James Haywood

<p>Global climate model (GCM) ensembles still produce a significant spread of estimates for the future of climate change which hinders our ability to influence policymakers. The range of these estimates can only partly be explained by structural differences and varying choice of parameterisation schemes between GCMs. GCM representation of cloud and aerosol processes, more specifically aerosol microphysical properties, remain a key source of uncertainty contributing to the wide spread of climate change estimates. The radiative effect of aerosol is directly linked to the microphysical properties and these are in turn controlled by aerosol source and sink processes during transport as well as meteorological conditions.</p><p>A Lagrangian, trajectory-based GCM evaluation framework, using spatially and temporally collocated aerosol diagnostics, has been applied to over a dozen GCMs via the AeroCom initiative. This framework is designed to isolate the source and sink processes that occur during the aerosol life cycle in order to improve the understanding of the impact of these processes on the simulated aerosol burden. Measurement station observations linked to reanalysis trajectories are then used to evaluate each GCM with respect to a quasi-observational standard to assess GCM skill. The AeroCom trajectory experiment specifies strict guidelines for modelling groups; all simulations have wind fields nudged to ERA-Interim reanalysis and all simulations use emissions from the same inventories. This ensures that the discrepancies between GCM parameterisations are emphasised and differences due to large scale transport patterns, emissions and other external factors are minimised.</p><p>Preliminary results from the AeroCom trajectory experiment will be presented and discussed, some of which are summarised now. A comparison of GCM aerosol particle number size distributions against observations made by measurement stations in different environments will be shown, highlighting the difficulties that GCMs have at reproducing observed aerosol concentrations across all size ranges in pristine environments. The impact of precipitation during transport on aerosol microphysical properties in each GCM will be shown and the implications this has on resulting aerosol forcing estimates will be discussed. Results demonstrating the trajectory collocation framework will highlight its ability to give more accurate estimates of the key aerosol sources in GCMs and the importance of these sources in influencing modelled aerosol-cloud effects. In summary, it will be shown that this analysis approach enables us to better understand the drivers behind inter-model and model-observation discrepancies.</p>


2013 ◽  
Vol 26 (24) ◽  
pp. 10051-10070 ◽  
Author(s):  
Meghan M. Dalton ◽  
Karen M. Shell

Abstract The climate sensitivity uncertainty of global climate models (GCMs) is partly due to the spread of individual feedbacks. One approach to constrain long-term climate sensitivity is to use the relatively short observational record, assuming there exists some relationship in feedbacks between short and long records. The present work tests this assumption by regressing short-term feedback metrics, characterized by the 20-yr feedback as well as interannual and intra-annual metrics, against long-term longwave water vapor, longwave atmospheric temperature, and shortwave surface albedo feedbacks calculated from 13 twentieth-century GCM simulations. Estimates of long-term feedbacks derived from reanalysis observations and statistically significant regressions are consistent with but no more constrained than earlier estimates. For the interannual metric, natural variability contributes to the feedback uncertainty, reducing the ability to estimate the interannual behavior from one 20-yr time slice. For both the interannual and intra-annual metrics, uncertainty in the intermodel relationships between 20-yr metrics and 100-yr feedbacks also contributes to the feedback uncertainty. Because of differences in time scales of feedback processes, relationships between the 20-yr interannual metric and 100-yr water vapor and atmospheric temperature feedbacks are significant for only one feedback calculation method. The intra-annual and surface albedo relationships show more complex behavior, though positive correspondence between Northern Hemisphere surface albedo intra-annual metrics and 100-yr feedbacks is consistent with previous studies. Many relationships between 20-yr metrics and 100-yr feedbacks are sensitive to the specific GCMs included, highlighting that care should be taken when inferring long-term feedbacks from short-term observations.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012070
Author(s):  
C N Nielsen ◽  
J Kolarik

Abstract As the climate is changing and buildings are designed with a life expectancy of 50+ years, it is sensible to take climate change into account during the design phase. Data representing future weather are needed so that building performance simulations can predict the impact of climate change. Currently, this usually requires one year of weather data with a temporal resolution of one hour, which represents local climate conditions. However, both the temporal and spatial resolution of global climate models is generally too coarse. Two general approaches to increase the resolution of climate models - statistical and dynamical downscaling have been developed. They exist in many variants and modifications. The present paper aims to provide a comprehensive overview of future weather application as well as critical insights in the model and method selection. The results indicate a general trend to select the simplest methods, which often involves a compromise on selecting climate models.


Author(s):  
Rasmus Benestad

What are the local consequences of a global climate change? This question is important for proper handling of risks associated with weather and climate. It also tacitly assumes that there is a systematic link between conditions taking place on a global scale and local effects. It is the utilization of the dependency of local climate on the global picture that is the backbone of downscaling; however, it is perhaps easiest to explain the concept of downscaling in climate research if we start asking why it is necessary. Global climate models are our best tools for computing future temperature, wind, and precipitation (or other climatological variables), but their limitations do not let them calculate local details for these quantities. It is simply not adequate to interpolate from model results. However, the models are able to predict large-scale features, such as circulation patterns, El Niño Southern Oscillation (ENSO), and the global mean temperature. The local temperature and precipitation are nevertheless related to conditions taking place over a larger surrounding region as well as local geographical features (also true, in general, for variables connected to weather/climate). This, of course, also applies to other weather elements. Downscaling makes use of systematic dependencies between local conditions and large-scale ambient phenomena in addition to including information about the effect of the local geography on the local climate. The application of downscaling can involve several different approaches. This article will discuss various downscaling strategies and methods and will elaborate on their rationale, assumptions, strengths, and weaknesses. One important issue is the presence of spontaneous natural year-to-year variations that are not necessarily directly related to the global state, but are internally generated and superimposed on the long-term climate change. These variations typically involve phenomena such as ENSO, the North Atlantic Oscillation (NAO), and the Southeast Asian monsoon, which are nonlinear and non-deterministic. We cannot predict the exact evolution of non-deterministic natural variations beyond a short time horizon. It is possible nevertheless to estimate probabilities for their future state based, for instance, on projections with models run many times with slightly different set-up, and thereby to get some information about the likelihood of future outcomes. When it comes to downscaling and predicting regional and local climate, it is important to use many global climate model predictions. Another important point is to apply proper validation to make sure the models give skillful predictions. For some downscaling approaches such as regional climate models, there usually is a need for bias adjustment due to model imperfections. This means the downscaling doesn’t get the right answer for the right reason. Some of the explanations for the presence of biases in the results may be different parameterization schemes in the driving global and the nested regional models. A final underlying question is: What can we learn from downscaling? The context for the analysis is important, as downscaling is often used to find answers to some (implicit) question and can be a means of extracting most of the relevant information concerning the local climate. It is also important to include discussions about uncertainty, model skill or shortcomings, model validation, and skill scores.


Author(s):  
Jayne F. Knott ◽  
Jo E. Sias ◽  
Eshan V. Dave ◽  
Jennifer M. Jacobs

Pavements are vulnerable to reduced life with climate-change-induced temperature rise. Greenhouse gas emissions have caused an increase in global temperatures since the mid-20th century and the warming is projected to accelerate. Many studies have characterized this risk with a top-down approach in which climate-change scenarios are chosen and applied to predict pavement-life reduction. This approach is useful in identifying possible pavement futures but may miss short-term or seasonal pavement-response trends that are essential for adaptation planning. A bottom-up approach focuses on a pavement’s response to incremental temperature change resulting in a more complete understanding of temperature-induced pavement damage. In this study, a hybrid bottom-up/top-down approach was used to quantify the impact of changing pavement seasons and temperatures on pavement life with incremental temperature rise from 0 to 5°C at a site in coastal New Hampshire. Changes in season length, seasonal average temperatures, and temperature-dependent resilient modulus were used in layered-elastic analysis to simulate the pavement’s response to temperature rise. Projected temperature rise from downscaled global climate models was then superimposed on the results to determine the timing of the effects. The winter pavement season is projected to end by mid-century, replaced by a lengthening fall season. Seasonal pavement damage, currently dominated by the late spring and summer seasons, is projected to be distributed more evenly throughout the year as temperatures rise. A 7% to 32% increase in the asphalt-layer thickness is recommended to protect the base and subgrade with rising temperatures from early century to late-mid-century.


2019 ◽  
Vol 76 (6) ◽  
pp. 1524-1542
Author(s):  
Melissa A Haltuch ◽  
Z Teresa A’mar ◽  
Nicholas A Bond ◽  
Juan L Valero

Abstract US West Coast sablefish are economically valuable, with landings of 11.8 million pounds valued at over $31 million during 2016, making assessing and understanding the impact of climate change on the California Current (CC) stock a priority for (1) forecasting future stock productivity, and (2) testing the robustness of management strategies to climate impacts. Sablefish recruitment is related to large-scale climate forcing indexed by regionally correlated sea level (SL) and zooplankton communities that pelagic young-of-the-year sablefish feed upon. This study forecasts trends in future sablefish productivity using SL from Global Climate Models (GCMs) and explores the robustness of harvest control rules (HCRs) to climate driven changes in recruitment using management strategy evaluation (MSE). Future sablefish recruitment is likely to be similar to historical recruitment but may be less variable. Most GCMs suggest that decadal SL trends result in recruitments persisting at lower levels through about 2040 followed by higher levels that are more favorable for sablefish recruitment through 2060. Although this MSE suggests that spawning biomass and catches will decline, and then stabilize, into the future under both HCRs, the sablefish stock does not fall below the stock size that leads to fishery closures.


Sign in / Sign up

Export Citation Format

Share Document