Gap Resonance of Fixed Floating Multi Caissons

Author(s):  
Limin Chen ◽  
Guanghua He ◽  
Harry B. Bingham ◽  
Yanlin Shao

Abstract Generally, numerous marine and offshore structures are composed of a number of modules which introduce narrow gaps between the multi-modules arranged side by side. The interaction between water waves and floating structures excites complex wave runup in the gaps and wave forces on the adjacent modules. In this study, free surface oscillations in twin narrow gaps between identical floating rectangular boxes are investigated by establishing a 2D viscous flow numerical wave tank based on a Constrained Interpolation Profile (CIP) method. The Tangent of Hyperbola for INterface Capturing (THINC) method is employed to capture the free surface. The rigid floating bodies are treated by a Virtual Particle Method (VPM). The incident waves are generated by an internal wave maker. For the fixed module cases, the computational results of wave height in narrow gaps are found in good coincidence with the available experimental measurements, especially for the resonant frequencies. The wave forces on the floating bodies are calculated numerically. The characteristic response of wave forces on the leading and rear bodies are consistent with the free surface elevations in the corresponding narrow gaps. With shallow draft, the gap resonance occurs at higher wave number.

1994 ◽  
Vol 21 (5) ◽  
pp. 762-769 ◽  
Author(s):  
Michael Isaacson ◽  
Kwok Fai Cheung

A recently developed numerical method for second-order wave diffraction is summarized and is used to develop a simplified approach to predicting nonlinear runup and maximum wave loads for large coastal and offshore structures subjected to regular waves. The perturbation method on which the method is based is extended to provide correction factors for the runup and maximum loads. These correction factors apply directly to the predictions of linear diffraction theory, and are independent of the wave height. The correction factors for runup, maximum force and maximum overturning moment are provided for a range of geometric parameters relating to the case of a large circular cylinder extending from the seabed to the free surface. Nonlinear runup and load maxima calculated by the correction factors are compared with the results of previous experimental studies; in general, favourable agreement is obtained. An example application of the proposed procedure is provided, the importance of nonlinear effects in the evaluation of runup and wave loads is discussed, and the limitations of the results are indicated. Key words: coastal structures, diffraction, hydrodynamics, ocean engineering, offshore structures, wave runup, wave force, waves.


1981 ◽  
Vol 4 (3) ◽  
pp. 589-613 ◽  
Author(s):  
Lokenath Debnath ◽  
Matiur Rahman

A theoretical study is made of the nonlinear wave loading on offshore structures using the diffraction theory of hydrodynamics. A nonlinear modification of the classical Morison equation,D≡Fℓ+FDfor estimating wave forces on offshore structures is suggested in this paper. The modified equation is found in the formD≡Fℓ+Fnℓ+FDwhereFnℓ≡Fd+Fw+Fqis the nonlinear contribution made up of the dynamic, waterline, and the quadratic forces associated with the irrotational-flow part of the wave loading on structures. The study has then been applied to calculate the linear and the nonlinear wave loadings on a large vertical cylinder partially immersed in an ocean of arbitrary uniform depth. All the linear and nonlinear forces exerting on the cylinder are determined explicitly. A comparison is made between these two kinds of forces. Special attention is given to the nonlinear wave loadings on the cylinder. It is shown that all nonlinear effects come from the interaction between the body's responses to the oncoming wave's fluctuating velocity and its fluctuating extension. It is found that the nonlinear effects are dominated by the sum of the dynamic and waterline forces. The nonlinear correction to Morison's equation increases with increasingkbwherebis the characteristic dimension of the body andkis the wave number. This prediction is shown to be contrary to that of the linear diffraction theory which predicted that the Morison coefficient decreases with increasingkb. Several interesting results and limiting cases are discussed in some detail.


2020 ◽  
Vol 14 (05) ◽  
pp. 2040005
Author(s):  
Didit Adytia ◽  
Sri Redjeki Pudjaprasetya

In designing a numerical tool for simulating a wide variety of water waves, i.e. short to long waves, an accurate and robust wave model and numerical implementation are needed. Dispersion and nonlinearity are the two most important physical aspects that should be modeled accurately. To be applicable to simulate many coastal engineering applications, the numerical scheme should be capable of simulating wave runup and overtopping. In this paper, we extend the capability of a Boussinesq-type model called Variational Boussinesq (VB) model for simulating the runup and overtopping of water waves. To that end, the vertical layer of the fluid is modeled continuously by a linear combination of three functions. If two of these three functions have been incorporated in the previous numerical approximation called the SVB model, this paper discusses the improvement of SVB model by incorporating all the three functions. This approach improve the dispersive property of the SVB model due to its ability to simulate short waves up to kd = 20, compared to the previous model which was only up to kd = 7, where k denotes wave number and d water depth. Furthermore, the model is implemented numerically by using the staggered conservative scheme. In the new implementation, the model is switched to the non-dispersive Shallow Water Equations (SWE) when dealing with a dry area for runup and overtopping phenomena. The new implementation is tested against analytical solutions of soliton propagation and standing wave phenomenon; moreover, it is also tested against experimental data from hydrodynamic laboratories for simulating solitary wave breaking above a sloping bottom, composite beach, and in a structure for simulating overtopping phenomenon. The implementation is also tested against experimental data for simulating irregular wave propagation and runup above a fringing reef. The results of numerical simulation agree quite well with experimental data.


Author(s):  
K. A. Belibassakis ◽  
G. A. Athanassoulis

A non-linear coupled-mode system of horizontal equations has been derived with the aid of Luke’s (1967) variational principle, modelling the evolution of nonlinear water waves in intermediate depth and over a general bathymetry Athanassoulis & Belibassakis (2002, 2008). Following previous work by the authors in the case of linearised water waves (Athanassoulis & Belibassakis 1999), the vertical structure of the wave field is exactly represented by means of a local-mode series expansion of the wave potential. This series contains the usual propagating and evanescent modes, plus two additional modes, the free-surface mode and the sloping-bottom mode, enabling to consistently treat the non-vertical end-conditions at the free-surface and the bottom boundaries. The coupled-mode system fully accounts for the effects of non-linearity and dispersion. The main feature of this approach that a small number of modes (of the order of 5–6) are enough for the precise numerical solution, provided that the two new modes (the free-surface and the sloping-bottom ones) are included in the local-mode series. The consistent coupled-mode system has been applied to numerical investigation of families of steady nonlinear travelling wave solutions in constant depth (Athanassoulis & Belibassakis 2007) showing good agreement with known solutions both in the Stokes and the cnoidal wave regimes. In the present work we focus on the hydroelastic analysis of floating bodies lying over variable bathymetry regions, with application to the non-linear scattering of water waves by large floating structures (of VLFS type or ice sheets) characterised by variable thickness (draft), flexural rigidity and mass distributions, modelled as thin plates of variable thickness, extending previous approaches (see, e.g., Porter & Porter 2004, Belibassakis & Athanassoulis 2005, 2006, Bennets et al 2007). Numerical examples are presented, showing that useful results can be obtained for the analysis of large floating elastic bodies or structures very efficiently by keeping only a few terms in the expansion. Ideas for extending our approach to 3D are also discussed.


Author(s):  
Biswajit Basu ◽  
Calin I. Martin

AbstractWe are concerned here with an analysis of the nonlinear irrotational gravity water wave problem with a free surface over a water flow bounded below by a flat bed. We employ a new formulation involving an expression (called flow force) which contains pressure terms, thus having the potential to handle intricate surface dynamic boundary conditions. The proposed formulation neither requires the graph assumption of the free surface nor does require the absence of stagnation points. By way of this alternative approach we prove the existence of a local curve of solutions to the water wave problem with fixed flow force and more relaxed assumptions.


Fluids ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 115
Author(s):  
Dmitry Kachulin ◽  
Sergey Dremov ◽  
Alexander Dyachenko

This article presents a study of bound periodically oscillating coherent structures arising on the free surface of deep water. Such structures resemble the well known bi-soliton solution of the nonlinear Schrödinger equation. The research was carried out in the super-compact Dyachenko-Zakharov equation model for unidirectional deep water waves and the full system of nonlinear equations for potential flows of an ideal incompressible fluid written in conformal variables. The special numerical algorithm that includes a damping procedure of radiation and velocity adjusting was used for obtaining such bound structures. The results showed that in both nonlinear models for deep water waves after the damping is turned off, a periodically oscillating bound structure remains on the fluid surface and propagates stably over hundreds of thousands of characteristic wave periods without losing energy.


Author(s):  
Didier Clamond

Steady two-dimensional surface capillary–gravity waves in irrotational motion are considered on constant depth. By exploiting the holomorphic properties in the physical plane and introducing some transformations of the boundary conditions at the free surface, new exact relations and equations for the free surface only are derived. In particular, a physical plane counterpart of the Babenko equation is obtained. This article is part of the theme issue ‘Nonlinear water waves’.


Author(s):  
B. Elie ◽  
G. Reliquet ◽  
P.-E. Guillerm ◽  
O. Thilleul ◽  
P. Ferrant ◽  
...  

This paper compares numerical and experimental results in the study of the resonance phenomenon which appears between two side-by-side fixed barges for different sea-states. Simulations were performed using SWENSE (Spectral Wave Explicit Navier-Stokes Equations) approach and results are compared with experimental data on two fixed barges with different headings and bilges. Numerical results, obtained using the SWENSE approach, are able to predict both the frequency and the magnitude of the RAO functions.


Author(s):  
Stefan Daum ◽  
Martin Greve ◽  
Renato Skejic

The present study is focused on performance issues of underwater vehicles near the free surface and gives insight into the analysis of a speed loss in regular deep water waves. Predictions of the speed loss are based on the evaluation of the total resistance and effective power in calm water and preselected regular wave fields w.r.t. the non-dimensional wave to body length ratio. It has been assumed that the water is sufficiently deep and that the vehicle is operating in a range of small to moderate Froude numbers by moving forward on a straight-line course with a defined encounter angle of incident regular waves. A modified version of the Doctors & Days [1] method as presented in Skejic and Jullumstrø [2] is used for the determination of the total resistance and consequently the effective power. In particular, the wave-making resistance is estimated by using different approaches covering simplified methods, i.e. Michell’s thin ship theory with the inclusion of viscosity effects Tuck [3] and Lazauskas [4] as well as boundary element methods, i.e. 3D Rankine source calculations according to Hess and Smith [5]. These methods are based on the linear potential fluid flow and are compared to fully viscous finite volume methods for selected geometries. The wave resistance models are verified and validated by published data of a prolate spheroid and one appropriate axisymmetric submarine model. Added resistance in regular deep water waves is obtained through evaluation of the surge mean second-order wave load. For this purpose, two different theoretical models based on potential flow theory are used: Loukakis and Sclavounos [6] and Salvesen et. al. [7]. The considered theories cover the whole range of important wavelengths for an underwater vehicle advancing in close proximity to the free surface. Comparisons between the outlined wave load theories and available theoretical and experimental data were carried out for a submerged submarine and a horizontal cylinder. Finally, the effective power and speed loss are discussed from a submarine operational point of view where the mentioned parameters directly influence mission requirements in a seaway. All presented results are carried out from the perspective of accuracy and efficiency within common engineering practice. By concluding current investigations in regular waves an outlook will be drawn to the application of advancing underwater vehicles in more realistic sea conditions.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Jithin Jose ◽  
Olga Podrażka ◽  
Ove Tobias Gudmestad ◽  
Witold Cieślikiewicz

Wave breaking is one of the major concerns for offshore structures installed in shallow waters. Impulsive breaking wave forces sometimes govern the design of such structures, particularly in areas with a sloping sea bottom. Most of the existing offshore wind turbines were installed in shallow water regions. Among fixed-type support structures for offshore wind turbines, jacket structures have become popular in recent times as the water depth for fixed offshore wind structures increases. However, there are many uncertainties in estimating breaking wave forces on a jacket structure, as only a limited number of past studies have estimated these forces. Present study is based on the WaveSlam experiment carried out in 2013, in which a jacket structure of 1:8 scale was tested for several breaking wave conditions. The total and local wave slamming forces are obtained from the experimental measured forces, using two different filtering methods. The total wave slamming forces are filtered from the measured forces using the empirical mode decomposition (EMD) method, and local slamming forces are obtained by the frequency response function (FRF) method. From these results, the peak slamming forces and slamming coefficients on the jacket members are estimated. The breaking wave forces are found to be dependent on various breaking wave parameters such as breaking wave height, wave period, wave front asymmetry, and wave-breaking positions. These wave parameters are estimated from the wave gauge measurements taken during the experiment. The dependency of the wave slamming forces on these estimated wave parameters is also investigated.


Sign in / Sign up

Export Citation Format

Share Document