Effect of Hydrophobic Iron Oxide Nanoparticles on the Properties of Oil Based Drilling Fluid

Author(s):  
Muhammad Awais Ashfaq Alvi ◽  
Mesfin Belayneh ◽  
Kjell Kåre Fjelde ◽  
Arild Saasen ◽  
Sulalit Bandyopadhyay

Abstract In recent years, nanoparticles (NPs) have shown the potential to improve the performance of oil well fluids significantly. Several studies have reported the ability of NPs to produce improved properties of both water and oil-based drilling fluids. In this paper, hydrophobic iron oxide NPs were synthesized by thermal decomposition of iron pentacarbonyl in an inert atmosphere, and its performance was tested in the oil-based drilling fluid with 90/10 oil to water ratio (base fluid). Oil-based drilling fluids treated with nanofluids were formulated by adding 0.5 wt. % and 1.0 wt. % iron oxide NPs in hexane solution to the base drilling fluid. The base fluid and the nanofluid treated drilling fluids were evaluated by characterizing their rheological properties at different temperatures, viscoelastic properties, lubricity, filtrate loss, static & dynamic settling, and separation properties. Results showed that 0.5 wt. % iron oxide dispersed in hexane reduced the HPHT filtrate loss by 70%, filter cake thickness by 55%, and the coefficient of friction by 39%. Moreover, the nanofluid based drilling fluid reduced the free oil layer caused by syneresis during aging at high temperature by 16.3% compared to the base fluid. This study has shown that hydrophobic iron oxide NPs have the potential to improve the properties of oil-based drilling fluid.

2020 ◽  
Vol 143 (4) ◽  
Author(s):  
Muhammad Awais Ashfaq Alvi ◽  
Mesfin Belayneh ◽  
Kjell Kåre Fjelde ◽  
Arild Saasen ◽  
Sulalit Bandyopadhyay

Abstract Lately, nanoparticles (NPs) have shown the potential to improve the performance of oil well fluids significantly. Several studies have reported the ability of NPs to produce improved properties of both water and oil-based drilling fluids. In this study, hydrophobic iron oxide NPs were synthesized by thermal decomposition of iron pentacarbonyl in an inert atmosphere, and its performance was tested in the oil-based drilling fluid with 90/10 oil-to-water ratio (base fluid). Oil-based drilling fluids treated with nanofluids were formulated by adding 0.5 wt% and 1.0 wt% iron oxide NPs in hexane solution to the base drilling fluid. The base fluid and the nanofluid-treated drilling fluids were evaluated by characterizing their rheological properties at different temperatures, viscoelastic properties, lubricity, filtrate loss, static and dynamic settling, and separation properties. Results showed that 0.5 wt% iron oxide dispersed in hexane reduced the high pressure high temperature (HPHT) filtrate loss by 70%, filter cake thickness by 55%, and the coefficient of friction by 39%. Moreover, the nanofluid based drilling fluid reduced the free oil layer caused by syneresis during aging at high temperature by 16.3% compared to the base fluid. This study has shown that hydrophobic iron oxide NPs have the potential to improve the properties of oil-based drilling fluid.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6718
Author(s):  
Muhammad Awais Ashfaq Alvi ◽  
Mesfin Belayneh ◽  
Sulalit Bandyopadhyay ◽  
Mona Wetrhus Minde

In recent years, several studies have indicated the impact of nanoparticles (NPs) on various properties (such as viscosity and fluid loss) of conventional drilling fluids. Our previous study with commercial iron oxide NPs indicated the potential of using NPs to improve the properties of a laboratory bentonite-based drilling fluid without barite. In the present work, iron oxide NPs have been synthesized using the co-precipitation method. The effect of these hydrophilic NPs has been evaluated in bentonite and KCl-based drilling fluids. Rheological properties at different temperatures, viscoelastic properties, lubricity, and filtrate loss were measured to study the effect of NPs on the base fluid. Also, elemental analysis of the filtrate and microscale analysis of the filter cake was performed. Results for bentonite-based fluid showed that 0.019 wt% (0.1 g) of NPs reduced the coefficient of friction by 47%, and 0.0095 wt% (0.05 g) of NPs reduced the fluid loss by 20%. Moreover, for KCl-based fluids, 0.019 wt% (0.1 g) of additive reduced the coefficient of friction by 45%, while higher concentration of 0.038 wt% (0.2 g) of NPs shows 14% reduction in the filtrate loss. Microscale analysis shows that presence of NPs in the cake structure produces a more compact and less porous structure. This study indicates that very small concentration of NPs can provide better performance for the drilling fluids. Additionally, results from this work indicate the ability of NPs to fine-tune the properties of drilling fluids.


Author(s):  
Zisis Vryzas ◽  
Vassilios C. Kelessidis ◽  
Lori Nalbandian ◽  
Vassilios Zaspalis

Smart drilling fluids, which can change their properties according to the flow environment, must be carefully designed so that they can handle the difficult challenges of HP/HT drilling successfully. Due to their unique physico-chemical properties, nanoparticles (NP) are considered as very good candidates for the formulation of these smart drilling fluids. This study presents filtration and rheological results of newly developed high-performance water-based drilling fluid systems containing different nanoparticles, commercial (C) titanium oxide (TiO2) and commercial (C) copper oxide (CuO) NP and compares them with results from using custom-made (CM) iron oxide (Fe3O4) NP and commercial (C) iron oxide (Fe3O4) NP, previously reported. Novel nano-based drilling fluids were made of de-ionized water, 7 wt% commercial Na-bentonite (base fluid), and NP were added at 0.5 wt%. The rheological properties of the produced suspensions were measured at temperatures up to 60°C and at atmospheric pressure with a Couette-type viscometer. Filtration characteristics were determined at elevated pressures and temperatures in a HP/HT filter press (500 psi/176°C) using ceramic discs as filter media, of permeability, k = 775 mD. The results of this study showed that the samples containing 0.5 wt% C TiO2 caused a reduction in the fluid loss by 23%, while C CuO NP resulted in 16% reduction, when compared to that of the base fluid, at these HPHT conditions. This should be compared to the 47% and 34% reduction in fluid loss of 0.5% CM Fe3O4 NP and of 0.5% of C Fe3O4 NP, reported previously. Analysis of rheological data revealed shear-thinning behavior for all the tested novel drilling fluids. The samples containing TiO2 and CuO NP exhibited a yield stress less than that of the base fluid, compared to the increased yield stress observed for the C and CM Fe3O4 NP. This behavior can be attributed to the fact that TiO2 and CuO NP may also act as deflocculants and prevent the gelation of bentonite suspensions. This study shows that commercial nanoparticles of TiO2 and CuO do not perform as well as the Fe3O4 NP on filtration but provide drilling fluids with lower yield stresses, thus they could be considered as alternatives to Fe3O4 in situations where the rheological properties are critical.


Author(s):  
Muhammad Awais Ashfaq Alvi ◽  
Mesfin Belayneh ◽  
Arild Saasen ◽  
Kjell Kåre Fjelde ◽  
Bernt S. Aadnøy

In recent years, the application of nanomaterial has been attracting the oil and gas industry. Nanomaterials research results show an improving performance of cement, drilling fluid and enhanced oil recovery. In this paper, the effect of multi-walled carbon nanotube (MWCNT) and MWCNT functionalized with ligands–OH and - COOH nanoparticles on laboratory drilling fluids formulated from bentonite, KCL, Carboxymethyl cellulose (CMC) and xanthan gum (XG) was studied. The formulations and tests were performed at room temperature. The results show that addition of 0.0095wt.% of MWCNT, MWCNT-OH and MWCNT-COOH nanoparticles in CMC/bentonite system decreases the filtrate-loss by 8.6 %, 7.1 % and 17.9 % respectively. These particles also decreased the coefficient of friction by 34 %, 37 % and 33 % respectively. In xanthan gum drilling fluid, 0.019wt%. MWCNT reduced the friction coefficient by 38 %.


Author(s):  
Flávia M. Fagundes ◽  
Nara B.C. Santos ◽  
João Jorge R. Damasceno ◽  
Fábio O. Arouca

In order to avoid solid-liquid gravitational separation of particles in the drilling fluid and cuttings generated in this process, the oil industry has been developing drilling fluids with shear-thinning and thixotropic characteristics. In case of operational stops in the drilling process, the intense sedimentation of these particles can damage the equipment used and the well. In this context, this study simulated an operational stop to obtain information about stability of solids in a paraffin-based suspension with time-dependent shear-thinning behavior, which has already been used in current drilling processes. A long-term test using gamma-ray attenuation technique identified the separation dynamics of a set of micrometric particles belonging to and incorporated into the drilling fluid during operation. This test verified the typical regions of gravitational sedimentation and, through constant concentration curves, indicated that the sedimentation process did not occur at a constant rate. This study also proposed a constitutive equation for pressure on solids.


Author(s):  
Eric Cayeux ◽  
Amare Leulseged

Abstract It is nowadays well accepted that the steady state rheological behavior of drilling fluids must be modelled by at least three parameters. One of the most often used models is the yield power law, also referred as the Herschel-Bulkley model. Other models have been proposed like the one from Robertson-Stiff, while other industries have used other three-parameter models such as the one from Heinz-Casson. Some studies have been made to compare the degree of agreement between different rheological models and rheometer measurements but in most cases, already published works have only used mechanical rheometers that have a limited number of speeds and precision. For this paper, we have taken measurements with a scientific rheometer in well-controlled conditions of temperature and evaporation, and for relevant shear rates that are representative to normally encountered drilling operation conditions. Care has been made to minimize the effect of thixotropy on measurements, as the shear stress response of drilling fluids depends on its shear history. Measurements have been made at different temperatures, for various drilling fluid systems (both water and oil-based), and with variable levels of solid contents. Also, the shear rate reported by the rheometer itself, is corrected to account for the fact that the rheometer estimates the wall shear rate on the assumption that the tested fluid is Newtonian. A measure of proximity between the measurements and a rheological model is defined, thereby allowing the ranking of different rheological behavior model candidates. Based on the 469 rheograms of various drilling fluids that have been analyzed, it appears that the Heinz-Casson model describes most accurately the rheological behavior of the fluid samples, followed by the model of Carreau, Herschel-Bulkley and Robertson-Stiff, in decreasing order of fidelity.


2020 ◽  
Vol 7 (2) ◽  
pp. 191230
Author(s):  
Yuhuan Bu ◽  
Rui Ma ◽  
Jiapei Du ◽  
Shenglai Guo ◽  
Huajie Liu ◽  
...  

This research work designed a novel mud-cake solidification method to improve the zonal isolation of oil and gas wells. The calculation methodology of mud-cake compressive strength was proposed. The optimal formula of activator and solid precursors, the proper activating time and the best activator concentration were determined by the compressive strength test. The effects of solid precursors on the properties of drilling fluid were evaluated. Test results show that the respective percentage of bentonite, metakaolin, slag and activator is 1 : 1 : 0.3 : 0.8, as well as the optimum ratio of Na 2 SiO 3 /NaOH is 40 : 1. The optimum concentration of activator is 0.21 and the activating time should be more than 10 min. The solid precursors did not show any bad influence on the rheological property of drilling fluids. Even though the compressive strength decreased when the solid precursors blended with barite, the strength values can still achieve 8 MPa. The reaction of metakaolin and activator formed cross-link structure in the mud-cake matrix, which enhanced the connection of the loose bentonite particles, lead to the significant enhancement of shear bonding strength and hydraulic bonding strength. This mud-cake solidification method provides a new approach to improve the quality of zonal isolation.


2012 ◽  
Vol 727-728 ◽  
pp. 1878-1883 ◽  
Author(s):  
Bruno Arantes Moreira ◽  
Flávia Cristina Assis Silva ◽  
Larissa dos Santos Sousa ◽  
Fábio de Oliveira Arouca ◽  
João Jorge Ribeiro Damasceno

During oil well drilling processes in reservoir-rocks, the drilling fluid invades the formation, forming a layer of particles called filter cake. The formation of a thin filter cake and low permeability helps to control the drilling operation, ensuring the stability of the well and reducing the fluid loss of the liquid phase in the interior of the rocks. The empirical determination of the constitutive equation for the stress in solids is essential to evaluate the filtration and filter cake formation in drilling operations, enabling the operation simulation. In this context, this study aims to evaluate the relationship between the porosity and stress in solids of porous media composed of bridging agents used in drilling fluids. The concentration distribution in sediments was determined using a non-destructive technique based on the measure of attenuated gamma rays. The procedure employed in this study avoids the use of compression-permeability cell for the sediment characterization.


2017 ◽  
Vol 899 ◽  
pp. 528-533 ◽  
Author(s):  
Arley Silva Rossi ◽  
Marina Seixas Pereira ◽  
Jéssika Marina dos Santos ◽  
Irineu Petri Jr. ◽  
Carlos Henrique Ataíde

Drilled cuttings contaminated by non aqueous drilling fluids are the major waste from oil well drilling activities. More restrictive environmental legislation has led to the search for alternative technologies to promote cuttings decontamination according to the law. The mixture of cuttings and fluid returning from the well goes through a set of separation equipments, called solids control systems, in order to recover the drilling fluid for reuse. The cuttings from the solids control system must be decontaminated before they can be discharged into the sea. Microwave heating has been studied over the past few years as an alternative to promote the decontamination of this waste and has been shown to be a promising technology. This work aimed to investigate fundamental aspects of microwave heating and drying of drilled cuttings. The heating curve of two different drilling fluids commonly employed in well-drilling operations was obtained. The kinetics of drying of cuttings contaminated with these drilling fluids was also investigated. It was evaluated the behavior of organic phase and water removal in the microwave drying process.


Author(s):  
Abdul Razak Ismail ◽  
W. R. W Sulaiman ◽  
M. Z. Jaafar ◽  
A. Aftab ◽  
A. A. Razi ◽  
...  

Drilling fluid is the key component to drill oil and gas wells. The rheological behavior of drilling fluid will be affected when drilling deep wells especially at high temperature and high pressure reservoir. This research was conducted to study the effect of the nanoparticles over the rheological properties of the drilling fluid when aging at high temperature condition. Several drilling fluids were prepared using synthetic based fluids (Sarapar and Saraline) to study the effect of multi-walled carbon nanotube (MWCNT) at different concentrations. The rheological properties of drilling fluid were analyzed after aging at 250 °F and 350 °F for 16 hours. The results revealed that the addition of MWCNT improved the 10-sec gel strength by 33% and filtrate loss volume was reduced to 10% after aging at 250°F in Saraline drilling fluid. Moreover, the plastic viscosity of Saraline and Sarapar drilling fluid after addition of MWCNT was enhanced by 6% and 27% at 350 °F. Filtrate loss volume of Sarapar drilling fluid was reduced by 19 % after aging at 250 °F for 16 hours. The overall results showed that the addition of MWCNT into the drilling fluid have slightly improved the rheological properties of drilling fluids under high temperature conditions.


Sign in / Sign up

Export Citation Format

Share Document