Evaluation of Strength Characteristics Considering Microscopic Heterogeneity of Structural Steels and Weld Zone by Using FEM-MD Coupling Method

Author(s):  
Masahito Mochizuki ◽  
Ryota Higuchi ◽  
Jinya Katsuyama ◽  
Masao Toyoda

The strength properties of structural steels or their weld zone are influenced by the microscopic heterogeneity. It is important to investigate the stress distribution for clarification of the mechanism of fracture and the material design by considering a grain boundary or its neighborhood because either can be a zone where the stress concentration is likely to occur due to a mismatch of the displacement. For this purpose, FEM-MD coupling method is one of the useful methods because it can treat the mismatch of the displacement caused by the microscopic heterogeneity. In this study, FEM-MD coupling method is proposed and the influence of the microscopic heterogeneity of steels is investigated by using FEM-MD coupling method.

Author(s):  
Masahito Mochizuki ◽  
Ryota Higuchi ◽  
Jinya Katsuyama ◽  
Masao Toyoda

FEM-MD coupling method is proposed for the evaluation of the strength properties of structural steels. It is important to investigate the stress distribution by considering the microscopic heterogeneity and deformation near the grain boundary for clarification of the mechanism of fracture and the material design. FEM-MD coupling method is used to estimate the stress distribution. Especially, the influence of microstructure of steel on strength properties is investigated by estimating the difference of stress distributions caused by different distributions of the grain shape, such as grain diameter, aspect ratio and grain orientation.


Author(s):  
R. Ganesan ◽  
A. K. Arumugam

Composite materials and laminates are being widely used in aerospace and automotive industries due to their less weight to stiffness ratio. Especially the use of composite laminates, made up of Carbon or Graphite Fiber Reinforced Plastics (CFRP/GFRP), in military and commercial aircraft structures has progressed steadily over the past few decades. Drilling holes and making cutouts in these laminates are unavoidable for practical reasons. These holes (or) cutouts introduces stress concentration near the hole (or) cutout edge and reduces the load-bearing capacity of the structure. Cutouts are made at the edges of composite laminates for practical purposes, which is capable of reducing the delamination effect in notched laminates. The stress distribution in notched composite laminates can vary according to the location of the notch in the laminate, which leads to the variation in strength and reliability values of notched laminates. The objective of the present work is to study the effect of notch location on the stress concentration and reliability of notched composite laminates. Composite laminate displays significant variation in material and strength properties and the stress distribution in the laminate becomes stochastic in nature. Thus the notched laminates were analyzed using a stochastic approach and designed based on a reliability-based design approach.


2021 ◽  
Vol 8 (1) ◽  
pp. 1-12
Author(s):  
Ashok Magar ◽  
Achchhe Lal

Abstract This paper presents the solution of stress distribution around elliptical cutout in an infinite laminated composite plate. Analysis is done for in plane loading under hygrothermal environment. The formulation to obtain stresses around elliptical hole is based on Muskhelishvili’s complex variable method. The effect of fibre angle, type of in plane loading, volume fraction of fibre, change in temperature, fibre materials, stacking sequence and environmental conditions on stress distribution around elliptical hole is presented. The study revealed, these factors have significant effect on stress concentration in hygrothermal environment and stress concentration changes are significant with change in temperature.


2021 ◽  
Vol 69 (3) ◽  
Author(s):  
S. J. Eder ◽  
P. G. Grützmacher ◽  
M. Rodríguez Ripoll ◽  
J. F. Belak

Abstract Depending on the mechanical and thermal energy introduced to a dry sliding interface, the near-surface regions of the mated bodies may undergo plastic deformation. In this work, we use large-scale molecular dynamics simulations to generate “differential computational orientation tomographs” (dCOT) and thus highlight changes to the microstructure near tribological FCC alloy surfaces, allowing us to detect subtle differences in lattice orientation and small distances in grain boundary migration. The analysis approach compares computationally generated orientation tomographs with their undeformed counterparts via a simple image analysis filter. We use our visualization method to discuss the acting microstructural mechanisms in a load- and time-resolved fashion, focusing on sliding conditions that lead to twinning, partial lattice rotation, and grain boundary-dominated processes. Extracting and laterally averaging the color saturation value of the generated tomographs allows us to produce quantitative time- and depth-resolved maps that give a good overview of the progress and severity of near-surface deformation. Corresponding maps of the lateral standard deviation in the color saturation show evidence of homogenization processes occurring in the tribologically loaded microstructure, frequently leading to the formation of a well-defined separation between deformed and undeformed regions. When integrated into a computational materials engineering framework, our approach could help optimize material design for tribological and other deformation problems. Graphic Abstract .


2021 ◽  
pp. 48-53
Author(s):  
I. V. Zyryanov ◽  
A. N. Akishev ◽  
I. B. Bokiy ◽  
N. M. Sherstyuk

A specific feature of open pit mining of diamond deposits in Western Yakutia is the construction of the open pits in the zone of negative ambient temperatures, which includes thick permafrost rock mass, and which is at the same time complicated by the influence of cryogenic processes on deformation of pit wall benches. The paper presents the comparative analysis of strength characteristics in frozen and thawed rocks, stability of benches during mining, the general geomechanical approach to the determination of parameters of non-mining walls of the ultra-deep open pit diamond mines, and the parameters of nonmining walls and benches. Optimization of open pit wall configuration should primarily be based on the maximum utilization of the strength properties of frozen rocks in combination with the development of new approaches, calculation schemes and methods for assessing stability of open pit walls and benches of unconventional design, including the non-mining vertical benches. The main design characteristic that determines the parameters of open pit walls is the structural tectonic relaxation coefficient, which specifies the calculated value of cohesion in rock mass. For the diamond deposits, the values of the structural relaxation coefficient were obtained in a series of field tests and back calculations. Full-scale tests were carried out both during exploration operations in underground mines and in open pits. The accuracy of determining the values of the structural relaxation coefficient in the range of 0.085–0.11 is confirmed by the parameters of non-mining walls in an open pit mine 385–640 m deep, with overall slope angles of 38–55° and a steeper H 0.35–0.5 lower part having the slope angle of up to 70° with average strength characteristics of 7.85–11.84 MPa and the internal friction angle of 28.1–37.4°. Using the natural load-bearing capacity of rock mass to the full advantage, which the values of the structural relaxation coefficient of deposits show, allows optimization of open pit wall slope design and minimization of stripping operations.


2013 ◽  
Vol 456 ◽  
pp. 451-455
Author(s):  
Jun Yang ◽  
Bo Li ◽  
Qiang Jia ◽  
Yuan Xing Li ◽  
Ming Yue Zhang ◽  
...  

Fatigue test of the welded joint of 5083 aluminum alloy with smooth and height of specimen and the weld zone than the high test measurement and theoretical stress concentration coefficient calculation, the weld reinforcement effect of stress concentration on the fatigue performance of welded joints. The results show that: Smooth tensile strength of specimens for 264MPa, fatigue strength is 95MPa, the tensile strength of the 36%. Higher tensile strength of specimens for 320MPa, fatigue strength is 70MPa, the tensile strength of the 22%. Higher specimen stress concentration coefficient is 1.64, the stress concentration to the weld toe becomes fatigue initiation source, and reduces the fatigue strength and the fatigue life of welded joints.


Author(s):  
V. I. Lukin

Scandium in aluminum alloys behaves as the most efficient modifier of the structure of the material and as an agent suppressing recrystallization. This unique behavior of scandium in alloys of the Al-Mg system greatly increases the strength characteristics, whilst retaining on a higher level the ductility and processing properties of deformed semi-finished products. This article describes the effect of complex alloying the Al-6.3% Mg alloy with scandium, manganese and zirconium on the weldability and strength properties of the material is of considerable scientific and practical importance.Investigations.


2018 ◽  
Vol 935 ◽  
pp. 79-83
Author(s):  
A.N. Volotskoy ◽  
Yuriy V. Yurkin ◽  
V.V. Avdonin

This research is devoted to the actual problem of the development of damping polymer materials which are effective in a wide range of temperatures and having satisfactory strength characteristics. There are many works devoted to the study of dynamic mechanical properties of filled composites, but most do not take into account the influence of plasticizer on the strength properties of the polymer, as they change its characteristics for the worse. In this respect, the study and comparison of the mechanical properties of the polymer base with the introduction of different types and concentrations of plasticizers is an urgent task. According to the received regularities it was possible to define the type, concentration and boundaries of the polarity of the plasticizer, which reduces the strength characteristics of ethylene-vinyl acetate to a lesser degree.


2007 ◽  
Vol 561-565 ◽  
pp. 2033-2036
Author(s):  
Rui Wen Li ◽  
Ping Dong

Beryllium (Be) is susceptible to introduce stress because it is a brittle metal with a high elastic modular. The compact tension (CT) specimens of beryllium were designed to determinate stress and fracture behaviors. Stress distribution near notch in CT beryllium was measured by the combination of an X-ray stress analysis and a custom-designed load device. The results show that local stresses near notch tip are much higher than those on other area. Thus, stress concentration lead the CT specimens fracture along the notch direction. Residual stresses due to machining are remained. A finite element ( FE ) calculation on the same loaded geometry was made, and the result is agreement with the measured stress distribution near notch.


Sign in / Sign up

Export Citation Format

Share Document