Illustration of the WPS Benefit Through Batman Test Series: Tests on Large Specimens Under WPS Loading Configurations

Author(s):  
S. Chapuliot ◽  
L. Ferry ◽  
T. Yuritzinn ◽  
D. Moinereau ◽  
A. Dahl ◽  
...  

A study combining modelling and a series of experiments on large specimens submitted to a thermal shock or isothermal cooling has been performed in CEA-Saclay in order to show the WPS benefit on large scale specimen. The test series, named BATMAN, was made on 18MND5 ferritic steel bars, containing a short or large fatigue pre-crack. For the two performed tests (fast thermal shock creating a gradient across the thickness of the bar or for the gradual uniform cooling), the effect of “Warm Pre-Stressing” was confirmed. In both cases, no propagation was observed during the thermal transient. Fracture occurred under low temperature conditions, at the end of the test when the tensile load was increased. The failure loads then recorded were substantially higher than during pre-stressing. To illustrate the benefit of the WPS effect, numerical interpretations were performed using either global approach or local approach criteria. The capability of models to predict the WPS effect was clearly shown.

Author(s):  
Krzysztof Jurczuk ◽  
Marcin Czajkowski ◽  
Marek Kretowski

AbstractThis paper concerns the evolutionary induction of decision trees (DT) for large-scale data. Such a global approach is one of the alternatives to the top-down inducers. It searches for the tree structure and tests simultaneously and thus gives improvements in the prediction and size of resulting classifiers in many situations. However, it is the population-based and iterative approach that can be too computationally demanding to apply for big data mining directly. The paper demonstrates that this barrier can be overcome by smart distributed/parallel processing. Moreover, we ask the question whether the global approach can truly compete with the greedy systems for large-scale data. For this purpose, we propose a novel multi-GPU approach. It incorporates the knowledge of global DT induction and evolutionary algorithm parallelization together with efficient utilization of memory and computing GPU’s resources. The searches for the tree structure and tests are performed simultaneously on a CPU, while the fitness calculations are delegated to GPUs. Data-parallel decomposition strategy and CUDA framework are applied. Experimental validation is performed on both artificial and real-life datasets. In both cases, the obtained acceleration is very satisfactory. The solution is able to process even billions of instances in a few hours on a single workstation equipped with 4 GPUs. The impact of data characteristics (size and dimension) on convergence and speedup of the evolutionary search is also shown. When the number of GPUs grows, nearly linear scalability is observed what suggests that data size boundaries for evolutionary DT mining are fading.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3008
Author(s):  
Agnieszka W. Lach ◽  
André V. Gaathaug

This paper presents a series of experiments on the effectiveness of existing mechanical ventilation systems during accidental hydrogen releases in confined spaces, such as underground garages. The purpose was to find the mass flow rate limit, hence the TPRD diameter limit, that will not require a change in the ventilation system. The experiments were performed in a 40 ft ISO container in Norway, and hydrogen gas was used in all experiments. The forced ventilation system was installed with a standard 315 mm diameter outlet. The ventilation parameters during the investigation were British Standard with 10 ACH and British Standard with 6 ACH. The hydrogen releases were obtained through 0.5 mm and 1 mm nozzles from different hydrogen reservoir pressures. Both types of mass flow, constant and blowdown, were included in the experimental matrix. The analysis of the hydrogen concentration of the created hydrogen cloud in the container shows the influence of the forced ventilation on hydrogen releases, together with TPRD diameter and reservoir pressure. The generated experimental data will be used to validate a CFD model in the next step.


2021 ◽  
Author(s):  
Eva O. L. Lantsoght ◽  
Cor van der Veen ◽  
Rutger Koekkoek ◽  
Henk Sliedrecht

<p>In The Netherlands, existing slab-between-girder bridges with prestressed girders and thin transversely prestressed concrete decks require assessment. The punching capacity was studied in a previous series of experiments, showing a higher capacity thanks to compressive membrane action in the deck. Then, concerns were raised with regard to fatigue loading. To address this, two series of large-scale experiments were carried out, varying the number of loads (single wheel print versus double wheel print), the loading sequence (constant amplitude versus variable amplitude, and different loading sequences for variable amplitude), and the distance between the prestressing ducts. An S-N curve is developed for the assessment of slab-between-girder bridges. The experiments showed that compressive membrane actions enhances the capacity of thin transversely prestressed decks subjected to fatigue loading.</p>


Author(s):  
S. J. Lewis ◽  
C. E. Truman ◽  
D. J. Smith

This article describes an investigation into the ability of a number of different fracture mechanics approaches to predict failure by brittle fracture under general elastic/plastic loading. Data obtained from C(T) specimens of A508 ferritic steel subjected to warm pre-stressing and side punching were chosen as such prior loadings produce considerably non-proportionality in the resulting stress states. In addition, failure data from a number of round notched bar specimens of A508 steel were considered for failure with and without prior loading. Failure prediction, based on calibration to specimens in the as received state, was undertaken using two methods based on the J integral and two based on local approach methodologies.


Author(s):  
Dominique Moinereau ◽  
Malik Ait-Bachir ◽  
Stéphane Chapuliot ◽  
Stéphane Marie ◽  
Clémentine Jacquemoud ◽  
...  

Evaluation of the fracture resistance of nuclear reactor pressure vessel (RPV) regarding the risk of brittle fracture is a key point in the structural integrity assessment of the component (RPV). Such approach is codified in French RSE-M code, based on a very conservative methodology. With respect to long term operation, an improvement of the present methodology is necessary and in progress to reduce this conservatism. One possible significant improvement is the inclusion of the warm pre-stress (WPS) concept in the assessment. After a short description of the WPS concept, the process engaged in France to allow inclusion of WPS in the integrity assessment is presented. In a first step, experimental and numerical studies have been conducted in France by EDF, CEA and AREVA (also including international collaborations and projects) to demonstrate and validate the beneficial effect of WPS on the brittle fracture resistance of RPV steels. A large panel of experimental results and data is now available obtained on small, medium and large scale specimens on representative RPV steels (including highly irradiated RPV materials). These data have been included in a specific WPS experimental database. Main experiments have been interpreted by refined computations, based on elastic plastic analyses and local approach to cleavage fracture. In a second step, a new criterion (ACE criterion) has been proposed by French organizations (AREVA, CEA and EDF) for an easy simplified evaluation of warm pre-stress effect on the brittle fracture resistance of RPV steels. Accuracy and conservatism of the criterion is verified by comparison to experimental data results and numerical analyses. Finally, implementation of the WPS effect in the French RSE-M code (for in service assessment) is in progress, based on the ACE criterion. The present paper summarizes all these steps leading to codification of WPS in RSE-M code.


2000 ◽  
Vol 27 (3) ◽  
pp. 475-480 ◽  
Author(s):  
O Shervan Khanna ◽  
Aftab A Mufti ◽  
Baidar Bakht

To study systematically the role of each layer of steel reinforcement in conventionally reinforced deck slabs of girder bridges, a full-scale model was built of a 175 mm thick concrete deck slab on two steel girders with a center-to-center spacing of 2.0 m. The 12 m long deck slab was conceptually divided into four 3 m long segments, identified as segments A, B, C, and D. Segment A contained isotropic steel reinforcement in two layers, conforming to the requirements of the Ontario Highway Bridge Design Code (OHBDC). Segment B contained only the bottom layer of steel reinforcement. Segment C contained only the bottom transverse steel bars. Segment D contained only bottom transverse glass fibre reinforced polymer (GFRP) bars having the same axial stiffness, but 8.6 times the axial tensile strength, as those of the steel bars in segment C. Each segment of the deck slab was tested to failure under a central concentrated load, simulating the dual tire footprint of 250 × 500 mm dimension of a typical commercial vehicle. All segments failed in the punching shear mode. The failure loads for the four segments were found to be 808, 792, 882, and 756 kN, respectively; these failure loads are similar in magnitude to that of a 175 mm thick steel-free deck slab with steel straps having nearly the same cross-sectional area per metre length of the slab as those of the bottom transverse steel bars in the first three segments. The tests on the four segments of the full-scale model have confirmed that (i) only the bottom transverse reinforcement influences the load carrying capacity of a reinforced concrete deck slab and (ii) the stiffness of the bottom transverse reinforcement, rather than its strength, is of paramount importance.Key words: arching, deck slab, FRP, shake down, slab-on-girder bridge.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Zhupeng Zheng ◽  
Ying Lei

Techniques based on ultrasonic guided waves (UGWs) play important roles in the structural health monitoring (SHM) of large-scale civil infrastructures. In this paper, dispersion equations of longitudinal wave propagation in reinforced concrete member are investigated for the purpose of monitoring steels embedded in concrete. For a steel bar embedded in concrete, not the velocity but the attenuation dispersion curves will be affected by the concrete. The effects of steel-to-concrete shear modulus ratio, density ratio, and Poisson’s ratio on propagation characteristics of guided wave in steel bar embedded in concrete were studied by the analysis of the real and imaginary parts of the wave number. The attenuation characteristics of guided waves of steel bar in different conditions including different bar concrete constraint and different diameter of steel bar are also analyzed. Studies of the influence of concrete on propagation characteristics of guided wave in steel bars embedded in concrete will increase the accuracy in judging the structure integrity and promote the level of defect detection for the steel bars embedded in concrete.


Author(s):  
Shengjun Yin ◽  
Richard Bass ◽  
Paul Williams ◽  
Michael Ludwig ◽  
Elisabeth Keim

Within the European Network NESC, the project NESC IV deals with constraint effects of cracks in large scale beam specimens, loaded by uni- or biaxial bending moments and containing surface or embedded cracks. The specimens are fabricated from original US RPV material, being cladded or cladding is removed. All large scale tests have been conducted at ORNL outside the NESC IV project. The outcome and the analyses of these uncladded and cladded beams containing the surface or embedded cracks are shown. By means of the finite element method, local approach methods and the Weibull stress models the specimens are analysed at the test temperatures and the probability of failure is calculated, taking into account constraint effects. For the case of the embedded cracks it turned out that the failure moment of the uncladded beam is 5% lower than the one of the cladded beam. Both crack fronts of the embedded crack are supposed to fail at the same failure moment. The results of the analysis of the cladded beam showed that the upper crack front nearer to the surface fails prior to the lower crack front, which is located deeper in the specimen (the failure moment is 5% lower). The numerical results agree very well with the experiments. The experimental failure moments could be well predicted and the failure scenario (which crack front fails first) could be determined. A theoretical shift in the transition temperature T0 due to constraint effects could be defined for both crack fronts.


Author(s):  
Peter James ◽  
Mike Ford

Within the EU 7th framework programme, STYLE, a number of large-scale tests have been performed. One of these tests, Mock-Up 2 (MU-2), was performed on a through wall crack located at a repair weld adjacent to a multi-pass narrow-gap weld. The aim of MU-2 was to investigate ductile crack growth under conditions with significant levels of residual stress. As part of the materials testing programme, low-constraint fracture specimens (three-point bend specimens with a/t=0.1) were extracted from the weld to test the weld materials fracture toughness. An overview of these tests is provided here. However, these low constraint tests demonstrated somewhat unusual fatigue crack growth on inserting the crack, leading to the crack depth being shorter in the centre of the specimens to the outside. Subsequently, although it has not been possible to use these specimens to determine the materials J-R curve, it does provide a features test for ductile modelling with the Gurson-Tvergaard-Needleman (GTN) local approach model for ductile crack growth. This paper provides an overview of the modelling associated to understand these observations, including an estimate of the retained residual stress, fatigue growth estimates and subsequent ductile modelling. An overview of the calibration of the GTN model is also provided using the weld material’s tensile tests, high constraint compact-tension tests and MU-2.


Sign in / Sign up

Export Citation Format

Share Document