Proposal of the Screening Method for Prevention of the Accumulation of the Ratcheting Strain Derived From the Movement of the Temperature Distribution

Author(s):  
Satoshi Okajima ◽  
Takashi Wakai ◽  
Masanori Ando ◽  
Yasuhiro Inoue ◽  
Sota Watanabe

The prevention of excessive deformation by thermal ratcheting is important in the design of high-temperature components of fast breeder reactors (FBR). This includes evaluation methods for a new type of thermal ratcheting caused by a traveling temperature distribution. Igari et al. [1] proposed a mechanism-based evaluation method to evaluate thermal ratcheting caused by temperature distributions traveling long and short distances. In this paper, we simplify the existing method and propose a screening method to prevent thermal ratcheting strain in the design of practical components. The proposed method consists of two steps to prevent the continuous accumulation of ratcheting strain. The first step is to determine whether all points through the wall thickness are in the plastic state. This is based on an equivalent stress, which comprises the primary stress, the thermal membrane stress, and the thermal bending stress. When the equivalent stress is less than the yield strength of the cylinder material, overall plastic deformation through the wall thickness does not occur. When the equivalent stress exceeds the yield strength in some regions of the cylinder, the ranges of these regions are measured for the second step. To prevent the acceleration of the plastic deformation due to creep, we define the upper limit of the equivalent stress based on the relaxation strength, Sr. The second step is to determine whether the accumulation of the plastic strain saturates (i.e. if shakedown occurs). For this purpose, we define the screening criteria for the range of the plastic region. When the range of the plastic region is sufficiently small, residual stress is generated in the direction opposite to the plastic deformation direction. As a result of residual stress, further accumulation of the plastic deformation is suppressed, and finally shakedown occurs. If the range of the plastic region exceeds the defined criteria, a more detailed evaluation method (e.g. inelastic finite element analysis) may be used for the component design. To validate the proposed method, we performed a set of elasto-plastic finite element method (FEM) analyses, with the assumption of elastic perfectly plastic material.

2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Satoshi Okajima ◽  
Takashi Wakai ◽  
Masanori Ando ◽  
Yasuhiro Inoue ◽  
Sota Watanabe

In this paper, we simplify the existing method and propose a screening method to prevent thermal ratcheting strain in the design of practical components. The proposed method consists of two steps to prevent the continuous accumulation of ratcheting strain. The first step is to determine whether all points through the wall thickness are in the plastic state. This is based on an equivalent membrane stress, which comprises the primary stress and the secondary membrane stress. When the equivalent stress exceeds the yield strength in some regions of the cylinder, the axial lengths of these regions are measured for the second step. The second step is to determine whether the accumulation of the plastic strain saturates. For this purpose, we define the screening criteria for the length of the area with full section yield state. When this length is sufficiently small, residual stress is generated in the direction opposite to the plastic deformation direction. As a result of residual stress, further accumulation of the plastic deformation is suppressed, and finally shakedown occurs. To validate the proposed method, we performed a set of elastoplastic finite element method (FEM) analyses, with the assumption of elastic perfectly plastic material. Not only did we investigate about the effect of the axial length of the area with full section yield state but also we investigated about effects of spatial distribution of temperature, existence of primary stress, and radius thickness ratio.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 629
Author(s):  
Nana Kwabena Adomako ◽  
Sung Hoon Kim ◽  
Ji Hong Yoon ◽  
Se-Hwan Lee ◽  
Jeoung Han Kim

Residual stress is a crucial element in determining the integrity of parts and lifetime of additively manufactured structures. In stainless steel and Ti-6Al-4V fabricated joints, residual stress causes cracking and delamination of the brittle intermetallic joint interface. Knowledge of the degree of residual stress at the joint interface is, therefore, important; however, the available information is limited owing to the joint’s brittle nature and its high failure susceptibility. In this study, the residual stress distribution during the deposition of 17-4PH stainless steel on Ti-6Al-4V alloy was predicted using Simufact additive software based on the finite element modeling technique. A sharp stress gradient was revealed at the joint interface, with compressive stress on the Ti-6Al-4V side and tensile stress on the 17-4PH side. This distribution is attributed to the large difference in the coefficients of thermal expansion of the two metals. The 17-4PH side exhibited maximum equivalent stress of 500 MPa, which was twice that of the Ti-6Al-4V side (240 MPa). This showed good correlation with the thermal residual stress calculations of the alloys. The thermal history predicted via simulation at the joint interface was within the temperature range of 368–477 °C and was highly congruent with that obtained in the actual experiment, approximately 300–450 °C. In the actual experiment, joint delamination occurred, ascribable to the residual stress accumulation and multiple additive manufacturing (AM) thermal cycles on the brittle FeTi and Fe2Ti intermetallic joint interface. The build deflected to the side at an angle of 0.708° after the simulation. This study could serve as a valid reference for engineers to understand the residual stress development in 17-4PH and Ti-6Al-4V joints fabricated with AM.


Author(s):  
V Sura ◽  
S Mahadevan

Shattered rim cracking, propagation of a subsurface crack parallel to the tread surface, is one of the dominant railroad wheel failure types observed in North America. This crack initiation and propagation life depends on several factors, such as wheel rim thickness, wheel load, residual stresses in the rim, and the size and location of material defects in the rim. This article investigates the effect of the above-mentioned parameters on shattered rim cracking, using finite element analysis and fracture mechanics. This cracking is modelled using a three-dimensional, multiresolution, elastic–plastic finite element model of a railroad wheel. Material defects are modelled as mathematically sharp cracks. Rolling contact loading is simulated by applying the wheel load on the tread surface over a Hertzian contact area. The equivalent stress intensity factor ranges at the subsurface crack tips are estimated using uni-modal stress intensity factors obtained from the finite element analysis and a mixed-mode crack growth model. The residual stress and wheel wear effects are also included in modelling shattered rim cracking. The analysis results show that the sensitive depth below the tread surface for shattered rim cracking ranges from 19.05 to 22.23 mm, which is in good agreement with field observations. The relationship of the equivalent stress intensity factor (Δ K eq) at the crack tip to the load magnitude is observed to be approximately linear. The analysis results show that the equivalent stress intensity factor (Δ K eq) at the crack tip depends significantly on the residual stress state in the wheel. Consideration of as-manufactured residual stresses decreases the Δ K eq at the crack tip by about 40 per cent compared to that of no residual stress state, whereas consideration of service-induced residual stresses increases the Δ K eq at the crack tip by about 50 per cent compared to that of as-manufactured residual stress state. In summary, the methodology developed in this article can help to predict whether a shattered rim crack will propagate for a given set of parameters, such as load magnitude, rim thickness, crack size, crack location, and residual stress state.


Author(s):  
Noel P. O’Dowd ◽  
Kamran M. Nikbin ◽  
Farid R. Biglari

In this paper, the effect of residual stress on the initiation of a crack at high temperature in a Type 347 austenitic steel weld is examined using the finite element method. Both two and three dimensional analyses have been carried out. Residual stresses have been introduced by prior mechanical deformation, using a previously developed notched compact tension specimen. It has been found that for the 347 weld material, peak stresses in the vicinity of the notch are approximately three times the yield strength at room temperature and the level of stress triaxiality (ratio between hydrostatic and equivalent stress) is approximately 1 (considerably higher than that for a uniaxial test). The finite element analysis includes the effects of stress redistribution and damage accumulation under creep conditions. For the case examined the analysis predicts that crack initiation will occur under conditions of stress relaxation if the uniaxial creep ductility of the material is less than 2.5%. Furthermore, the predicted life of the component under constant load (creep conditions) is significantly reduced due to the presence of the residual stress field.


2000 ◽  
Vol 122 (2) ◽  
pp. 130-138 ◽  
Author(s):  
Toshihide Igari ◽  
Hiroshi Wada ◽  
Masahiro Ueta

Recently, structural design against a new type of thermal ratcheting under a null-primary-stress condition has been required. The representative case is the thermal ratcheting of a hollow cylinder caused by a traveling temperature distribution. In this paper, the mechanism of this ratcheting is proposed, and the evaluation method of ratcheting strain is shown based on this mechanism. The proposed evaluation method is basically based on the hoop-membrane stress due to the axial temperature distribution, and considers the influence of axial bending stress and traveling distance of temperature distribution. Predicted results by this method correspond to numerical results by FEM and can conservatively estimate the experimental results with several kinds of traveling distance, stress levels, and two types of temperature hold for types 316 and 316FR stainless steels. [S0094-9930(00)01102-1]


2006 ◽  
Vol 74 (4) ◽  
pp. 717-722 ◽  
Author(s):  
Alexander M. Korsunsky ◽  
Gabriel M. Regino

Autofrettage is a treatment process that uses plastic deformation to create a state of permanent residual stress within thick-walled tubes by pressurizing them beyond the elastic limit. The present paper presents a novel analytical approach to the interpretation of residual elastic strain measurements within slices extracted from autofrettaged tubes. The central postulate of the approach presented here is that the observed residual stress and residual elastic strains are secondary parameters, in the sense that they arise in response to the introduction of permanent inelastic strains (eigenstrains) by plastic deformation. The problem of determining the underlying distribution of eigenstrains is solved here by means of a variational procedure for optimal matching of the eigenstrain finite element model to the observed residual strains reported in the literature by Venter et al., 2000, J. Strain Anal., 35, p. 459. The eigenstrain distributions are found to be particularly simple, given by one-sided parabolas. The relationship between the measured residual strains within a thin slice to those in a complete tube is discussed.


2007 ◽  
Vol 345-346 ◽  
pp. 849-852
Author(s):  
S.Y. Kim ◽  
S.K. Jeon ◽  
J.H. Kim ◽  
J.M. Yoon

Forging is applied for many industrial fields. Of course, there is no exception in nipple of automotive hose. Finding method of forging process is metallic stress analysis, and we can predict this possibility by finite element forging analysis. But there are many manufacturing procedure after forging, and additional heat treatment or coating can vary metal texture. So, in this research, we focus on the measuring and analysis of plastic residual stress distribution at overall manufacturing process. First step, we measured real residual stress at each forging process by X ray diffract meter from raw material to final product. Second step, we simulated parts-assembly process by nonlinear finite element analysis. In this step, we can prove how Zn–Ni coating is more contributable to metal strength than Zn coating. And we can conclude for robust design that manufacturing process analysis must be observed carefully from raw material to final manufacturing state.


1987 ◽  
Vol 109 (2) ◽  
pp. 330-337 ◽  
Author(s):  
Nobuo Ohmae

Large plastic deformation caused by friction for high purity copper was investigated using the finite element method with an updated Lagrangian formulation. The phenomenological background of this large plastic deformation was studied with a scanning electron microscope, and the nucleation of voids similar to those obtained for copper rolled to over 50 percent reduction was observed. Void nucleation was found to correlate with the agglomeration of over-saturated vacancies formed under high plastic strains. The computer-simulation analyzed such heavy deformation with an equivalent stress greater than the tensile strength and with an equivalent plastic strain of 0.44. Crack propagation was discussed by computing the J-integrals.


2015 ◽  
Vol 55 (5) ◽  
pp. 347 ◽  
Author(s):  
Oskar Zemčík ◽  
Josef Sedlák ◽  
Josef Chladil

<p>This paper describes changes observed in bearing steel due to roller burnishing. Hydrostatic roller burnishing was selected as the most suitable method for performing roller burnishing on hardened bearing steel. The hydrostatic roller burnishing operation was applied as an additional operation after standard finishing operations. All tests were performed on samples of 100Cr6 material (EN 10132-4), and changes in the surface layer of the workpiece were then evaluated. Several simulations using finite element methods were used to obtain the best possible default parameters for the tests. The residual stress and the plastic deformation during roller burnishing were major parameters that were tested.</p>


2011 ◽  
Vol 189-193 ◽  
pp. 2993-2996
Author(s):  
Xue Peng Gong

In order to realize high efficiency and flexible manufacturing for rotary surfaces, efficient spinning technology (EST) is researched. It is the combination of multi-point forming and traditional spinning. Principle of EST is described, traditional spinning method is compared with it, and characteristics of it are analyzed. Finite element analysis (FEA) model of disc-shape part is established, EST process is analyzed, equivalent stress and plastic strain distributions are analyzed. EST equipment is developed, and the experiments are made. Results indicate: EST process consists of four stages; equivalent stress in sheet metal’s center region and bendable rollers active region exceeds yield stress, and plastic deformation is generated; experimental result accords with simulation result. Feasibility of EST is validated by simulation and experimental results.


Sign in / Sign up

Export Citation Format

Share Document