Determination of Pipeline Yielding Occurred in Hydrostatic Pressure Testing

Author(s):  
Xian-Kui Zhu

Abstract The pipeline industry has traditionally utilized the “double stroke” concept to define line pipe yielding for limiting plastic deformation of the pipeline during hydrostatic pressure testing. Practice showed that double stroke may define a nominal yield point lying between the elastic limit and the offset yield strength. Recently, a set of field hydrostatic tests were conducted on an X70 pipeline at Enterprise Products, and the test pressure at double stroke was as high as 129% of SMYS, but the von Mises stress was less than the actual yield strength. The entire pipeline was thought in the elastic conditions at double stroke during the hydrostatic testing. It is well recognized that the classical Tresca and von Mises yield criteria determines a lower and an upper bound of the limit load at yielding, and a newly proposed Zhu-Leis yield criterion determines a medium result of the two classical solutions. Extensive full-scale tests have confirmed that the Zhu-Leis yield solution is the best prediction of experimental data on average. This paper attempts to use the more accurate Zhu-Leis yield criterion to reanalyze the real-world hydrostatic tests of the X70 pipeline to see if pipe yielding occurs and to determine pipe diameter expansion at double stroke during the hydrostatic pressure testing.

2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Jingwei Yu ◽  
Qingguo Fei ◽  
Peiwei Zhang ◽  
Yanbin Li ◽  
Dahai Zhang ◽  
...  

Abstract An innovative yield criterion based on von Mises stress is proposed to represent the strain rate-dependent behavior under dynamic load. Considering the strain rate in the constitutive model, the distortional strain energy density is derived and the yield criterion is established. A plot of yield strength for a range of strain rate reveals that despite the differences in material properties and test methods, the yield strength rise can be represented by a unified criterion. The overall yield behavior of the material under dynamic load can be explained by introducing the strain rate into the constitutive model and threshold distortional strain energy density. This criterion is in a simple form that may be widely applied.


2006 ◽  
Vol 532-533 ◽  
pp. 881-884
Author(s):  
Qin Xie ◽  
Geng Liu ◽  
Tian Xiang Liu ◽  
Jane Q. Wang

Reported in the paper is an elastic-plastic contact model developed to analyze the contact performance characteristics of materials with gradient yield strength. Plastic yielding and the strain-hardening properties of the materials are taken into account. The finite element method, the initial stiffness method, and a mathematical programming technique are utilized to solve the contact model. The von Mises yield criterion is used to determine the inception of plastic deformation. Results indicate that nitrided material with appropriate gradient of yield strength may greatly alter the distributions of contact stress, contact pressure as compared with untreated material in contact. The effects of different yield strength variation path of material on von Mises stress distributions are numerically investigated and discussed.


2009 ◽  
Vol 44 (6) ◽  
pp. 407-416 ◽  
Author(s):  
P J Budden ◽  
Y Lei

Limit loads for a thick-walled cylinder with an internal or external fully circumferential surface crack under pure axial load are derived on the basis of the von Mises yield criterion. The solutions reproduce the existing thin-walled solution when the ratio between the cylinder wall thickness and the inside radius tends to zero. The solutions are compared with published finite element limit load results for an elastic–perfectly plastic material. The comparison shows that the theoretical solutions are conservative and very close to the finite element data.


Author(s):  
Xiaoben Liu ◽  
Hong Zhang ◽  
Mengying Xia ◽  
Yanfei Chen ◽  
Kai Wu ◽  
...  

Pipelines in service always experience complicated loadings induced by operational and environmental conditions. Flood is one of the common natural hazard threats for buried steel pipelines. One exposed river crossing X70 gas pipeline induced by flood erosion was used as a prototype for this study. A mechanical model was established considering the field loading conditions. Morison equations were adopted to calculate distributional hydrodynamic loads on spanning pipe caused by flood flow. Nonlinear soil constraint on pipe was considered using discrete nonlinear soil springs. An explicit solution of bending stiffness for pipe segment with casing was derived and applied to the numerical model. The von Mises yield criterion was used as failure criteria of the X70 pipe. Stress behavior of the pipe were analyzed by a rigorous finite element model established by the general-purpose Finite-Element package ABAQUS, with 3D pipe elements and pipe-soil interaction elements simulating pipe and soil constraints on pipe, respectively. Results show that, the pipe is safe at present, as the maximum von Mises stress in pipe with the field parameters is 185.57 MPa. The critical flow velocity of the pipe is 5.8 m/s with the present spanning length. The critical spanning length of the pipe is 467 m with the present flow velocity. The failure pipe sections locate at the connection point of the bare pipe and the pipe with casing or the supporting point of the bare pipe on riverbed.


2005 ◽  
Vol 127 (3) ◽  
pp. 484-493 ◽  
Author(s):  
Robert Jackson ◽  
Itti Chusoipin ◽  
Itzhak Green

This work presents a finite element model (FEM) of the residual stresses and strains that are formed after an elastoplastic hemispherical contact is unloaded. The material is modeled as elastic perfectly plastic and follows the von Mises yield criterion. The FEM produces contours for the normalized axial and radial displacements as functions of the removed interference depth and location on the surface of the hemisphere. Contour plots of the von Mises stress and other stress components are also presented to show the formation of the residual stress distribution with increasing plastic deformation. This work shows that high residual von Mises stresses appear in the material pileup near the edge of the contact area after complete unloading. Values are defined for the minimum normalized interference, that when removed, results in plastic residual stresses. This work also defines an interference at which the maximum residual stress transitions from a location below the contact region and along the axis of symmetry to one near to the surface at the edge of the contact radius (within the pileup).


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Patrick A. Tibbits

Gaussian time-varying loading induces Gaussian components of the stress tensor in a linear structure, where the loading is assumed stationary. For any stress component, finite element spectrum analysis obtains the standard deviation, and any percentile can be calculated as a multiple of the standard deviation. However, a yield criterion requires a percentile of von Mises stress. The distribution of von Mises stress arising from random vibration loading stymies closed-form characterization, but several algorithms estimate its percentiles. One algorithm treats combined random vibration and static loadings. This paper improves computational efficiency for special plane stress cases, e.g., combining finite element spectrum and static analyses of piping models. All the algorithms are applied to a simple test model. Results match Monte Carlo simulation. Computational efficiencies are evaluated and compared.


MESIN ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Teddy Andreas ◽  
Tono Sukarnoto ◽  
Soeharsono Soeharsono

<p><em>The PPCW railroad flatcars is railroad flatcars used to transport container loads with a maximum load capacity of up to 42 tons. In its use, these railroad flatcars are used to transport the cement bags in the pallet arrangement resulting in crack in the bottom frame of the PPCW railroad flatcars structure. The purpose of this analysis is to find out stress value and deformation value that occurred in the railroad flatcars due to the cement bags loading. The analysis process begins with modeling according to the original size of the railroad flatcars which is then followed by providing the support, gravity, loads, and material specifications used. Based on the result of analysis that has been obtained from the load of cement bags of 546,000 N and ratchet lashing of 900,000 N on the frame of PPCW railroad flatcars, we obtained the maximum von Mises stress value of 231.91 MPa arising on the bottom frame of the PPCW railroad flatcars structure as the site of cracking and the maximum total deformation value of 19.526 mm arising in the center of the railroad flatcars. The PPCW railroad flatcars made from SS400 with yield strength value of 245 MPa. Therefore, it was found that the value of stress arising in the railroad flatcars is still in the safe area and is allowed</em><em>.</em><em></em></p>


Author(s):  
Emanuel Willert ◽  
Fabian Forsbach ◽  
Valentin L. Popov

The Hertzian contact theory, as well as most of the other classical theories of normal and tangential contact, provides displacements and the distribution of normal and tangential stress components directly in the contact surface. However, other components of the full stress tensor in the material may essentially influence the material behaviour in contact. Of particular interest are principal stresses and the equivalent von Mises stress, as well as the gradient of the hydrostatic pressure. For many engineering and biomechanical problems, it would be important to find these stress characteristics at least in the contact plane. In the present paper, we show that the complete stress state in the contact plane can be easily found for axially symmetric contacts under very general assumptions. We provide simple explicit equations for all stress components and the normal component of the gradient of hydrostatic pressure in the form of one-dimensional integrals.


Author(s):  
Nur Fazlin Che Halim ◽  
Nor Azwadi Che Sidik

The last decade has seen the rapid advancement of nanofluid in several ways. Nanofluid based on the refrigerant have been introduced as nanorefrigerant in recent years due to their significant effects on the efficiency of heat transfer. Previous studies showed some limitation in ways of dispersing nanoparticles into refrigerant. Hence, a new idea of adding nanoparticles into refrigerant has been presented. A mixing chamber has been designed to mix nanoparticles into high pressure refrigerant. The mixing chamber design is drawn with five different wall thickness which are 2 mm, 4 mm, 6 mm, 8 mm and 10 mm to investigate the sturdiest design that can withstand high pressure. Static structural analysis is performed to all designs with different wall thickness on SolidWorks Simulation. The maximum values of von Misses stress and displacement has been presented in this paper. Validation of the results are made by comparing the maximum values of von Mises stress with yield strength of the material. Mixing chamber with wall thickness of 10 mm showed the best results.


Author(s):  
Min Xu ◽  
Yujie Zhao ◽  
Binbin Zhou ◽  
Xiaohua He ◽  
Changyu Zhou

Abstract Based on the Hill yield criterion, the analytical solutions of the limit load of orthotropic thick-walled pipes under pure internal pressure, bending moment and torsion are given respectively. The simplified Mises analytical solution and finite element results of limit load for isotropic thick-walled pipe are obtained. The solution verifies the reliability of the analytical solution. The paper discusses the difference of limit load of isotropic and orthotropic pipes under the conditions of pure internal pressure, pure bending moment and pure torsion moment. It is concluded that the influence of material anisotropy on the limit load is significant. The limit load of pipe under pure internal pressure is mainly determined by circumferential yield strength, pure bending is only related to axial yield strength and pure torsion moment is related to the yield strength in the 45° direction and radial yield strength.


Sign in / Sign up

Export Citation Format

Share Document