European Project ATLAS+: Evaluation of a Shear Modified Gurson Model by Comparison to Experimental Fracture Tests on SENT Fracture Specimens

Author(s):  
Tobias Bolinder ◽  
Dominique Moinereau ◽  
Patrick Le Delliou ◽  
Anna Dahl ◽  
Jacques Besson

Abstract This paper will assess the capability of the shear modified Gurson model developed by Nahshon and Hutchinson which is used by Kiwa Inspecta within the ATLAS+ project. This is done by comparison to experimental results from SENT fracture tests performed by EDF and ARMINES. The procedure for parameter identification for the standard and shear modified Gurson model is also summarized. The work presented in this paper is part of Work Package 3 within the ATLAS+ project. WP3 focus mainly on ductile tearing predictions for large defects in components. Models exists to accurately predict ductile tearing and to consider phenomena such as stress triaxiality effects. These advanced models include local approach coupled models or advanced energetic approaches. However, there is a need to validate these models for use in industrial applications. This will be done within the ATLAS+ project by predicting the results of the large scale component tests where input to the models are given from small size laboratory specimens. Within the paper a description of the shear modified Gurson model is given, as developed by Nashson and Hutchinson [1]. Furthermore, the procedure in determining the material model parameters is discussed. To determine the material parameters for the shear modified Gurson model a uniaxial tensile test, a fracture test and shear tests are used. The material that is used is the ferritic steel WB 36 (15 NiCuMoNb 5) which will be used for the large scale component tests within the ATLAS+ project. The procedure is also evaluated by comparing predictions done with the shear modified Gurson model to experimental results from SENT specimens performed by EDF and ARMINES. A comparison of the capability in predicting the ductile tearing in the SENT experiments between the standard Gurson model and the shear modified Gurson model is also presented within the paper.

2018 ◽  
Vol 19 (2) ◽  
pp. 202 ◽  
Author(s):  
Rasoul Safdarian

Forming limit diagram (FLD) is one of the formability criteria which is a plot of major strain versus minor strain. In the present study, Gurson-Tvergaard-Needleman (GTN) model is used for FLD prediction of aluminum alloy 6061. Whereas correct selection of GTN parameters’ is effective in the accuracy of this model, anti-inference method and numerical simulation of the uniaxial tensile test is used for identification of GTN parameters. Proper parameters of GTN model is imported to the finite element analysis of Nakazima test for FLD prediction. Whereas FLD is dependent on forming history and strain path, forming limit stress diagram (FLSD) based on the GTN damage model is also used for forming limit prediction in the numerical method. Numerical results for FLD, FLSD and punch’s load-displacement are compared with experimental results. Results show that there is a good agreement between the numerical and experimental results. The main drawback of numerical results for prediction of the right-hand side of FLD which was concluded in other researchers’ studies was solved in the present study by using GTN damage model.


Author(s):  
Stéphane Marie ◽  
Arnaud Blouin ◽  
Tomas Nicak ◽  
Dominique Moinereau ◽  
Anna Dahl ◽  
...  

Abstract The main objective and mission of the ATLAS+ project is to develop advanced structural assessment tools to address the remaining technology gaps for the safe and long term operation of nuclear reactor pressure coolant boundary systems. ATLAS+ WP3 focuses mainly on ductile tearing prediction for large defect in components: Several approaches have been developed to accurately model the ductile tearing process and to take into account phenomena such as the triaxiality effect, or the ability to predict large tearing in industrial components. These advanced models include local approach coupled models or advanced energetic approaches. Unfortunately, the application of these tools is today rather limited to R&D expertise. However, because of the continuous progress in the performance of the calculation tools and accumulated knowledge, in particular by members of ATLAS+, these models can now be considered as relevant for application in the context of engineering assessments. WP3 will therefore: • Illustrate the implementation of these models for industrial applications through the interpretation of large scale mock-ups (with cracks in weld joints for some of them), • Make recommendations for the implementation of the advanced models in engineering assessments, • Correct data from the conventional engineering approach by developing a methodology to produce J-Δa curve suitable case by case, based on local approach models, • Improve the tools, guidance and procedures for undertaking leak-before-break (LBB) assessments of piping components, particularly in relation to representing structural representative fracture toughness J-Resistance curves and the influence of weld residual stresses. To achieve these goals, WP3 is divided into 4 sub-WPs and this paper presents the progress of the work performed in each sub-WP after 24 months of activities.


2016 ◽  
Vol 46 (8) ◽  
pp. 1616-1632 ◽  
Author(s):  
Shiping Yin ◽  
Bo Wang ◽  
Fei Wang ◽  
Shilang Xu

This paper presents an experimental investigation into the influence of bond characteristics between textile and matrix on the mechanical behavior of textile-reinforced concrete (TRC). Two types of tests were performed, i.e. pullout test and uniaxial tensile test. Self-compacting fine-grain concrete was adopted. Two kinds of hybrid textile, consisting of both carbon and E-glass yarns, were specially prepared for this study. The experimental results show that sticking sands on the textile after epoxy resin impregnation can improve the interfacial property between textile and matrix. The specimens with textile of 10 mm × 10 mm mesh have stronger bond strength than those with textile of 25 mm × 25 mm mesh, and can reach the maximum tensile strength of yarns when the initial bond length is between 30 mm and 35 mm. Moreover, sticking sands on the textile can improve the multiple cracks form and the ultimate bearing capacity of TRC under uniaxial tensile load. Specimens with textile of 10 mm × 10 mm mesh have higher first-crack loads than those with textile of 25 mm × 25 mm mesh whether or not the textile surface treatment was conducted, and also have better crack distribution. Finally, based on the experimental results from TRC under uniaxial tensile load, a double linear constitutive equation of stress–strain relationship of carbon fiber yarn is provided in this paper.


2014 ◽  
Vol 540 ◽  
pp. 48-51
Author(s):  
Xia Ren ◽  
Lian Xiang Ma

This paper uses the ABAQUS finite element analysis software for modeling and nonlinear analysis of aircraft tires. Paper H44.5 × 16.5-21 aviation tires, The plastic material of the tire subjected to uniaxial stretching to obtain a rubber such as Young's modulus, Poisson's ratio of the material parameters. Uniaxial tensile test tests the tensile properties of the rubber, the use of large-scale numerical calculations and fitting analysis of the experimental data analysis software Matlab, Yeoh model mechanical parameters.


Author(s):  
Arnaud Blouin ◽  
Stéphane Marie ◽  
Tomas Nicak ◽  
Antti Timperi ◽  
Peter Gill

Abstract The main objective and mission of the ATLAS+ project is to develop advanced structural assessment tools to address the remaining technology gaps for the safe and long term operation of nuclear reactor pressure coolant boundary systems. ATLAS+ WP3 focuses mainly on ductile tearing prediction for large defect in piping and associated components: Several approaches have been developed to accurately model the ductile tearing process and to take into account phenomena such as triaxiality effects, or the ability to predict large tearing in industrial components. These advanced models include local approach coupled models or advanced energetic approaches. Unfortunately, the application of these tools is currently rather limited to R&D expertise. However, because of the continuous progress in the performance of calculation tools and accumulated knowledge, in particular by members of the ATLAS+ consortium, these models can now be considered as relevant for application in the context of engineering assessments. WP3 has been planned to: • Illustrate the implementation of these models for industrial applications through the interpretation of large scale mock-ups (with cracks in weld joints for some of them), • Make recommendations for the implementation of the advanced models in engineering assessments, • Correct data from the conventional engineering approach by developing a methodology to produce J-Δa curve suitable case by case, based on local approach models, • Improve the tools, guidance and procedures for undertaking leak-before-break (LBB) assessments of piping components, particularly in relation to representing structural representative fracture toughness J-Resistance curves and the influence of weld residual stresses. To achieve these goals, WP3 is divided into 4 sub-WPs and this paper presents the progress of the work performed in each sub-WP after 36 months of activities.


1968 ◽  
Vol 90 (4) ◽  
pp. 435-440
Author(s):  
K. T. Chang ◽  
P. M. Leopold

This investigation was conducted to define the plastic stress distribution at a section 90 degrees from the point of load application on a ring. The elastic and plastic stress distribution was determined experimentally by using postyield strain gages and the stress-strain relationship obtained from a uniaxial tensile test. The experimental results in the elastic range were found to agree with presently available theoretical predictions. A theoretical plasticity analysis of the ring was made by assuming that it deforms to the shape of an ellipse and that plane sections remain plane. The strains determined in this manner were used to calculate stresses off the tensile stress-strain curve. The experimental results indicated that this initial analysis gave a good approximation of the stress distribution for large deflections of the ring.


2015 ◽  
Vol 1089 ◽  
pp. 337-340
Author(s):  
Juan Ling ◽  
Hua Guan Li ◽  
Jie Tao ◽  
Xun Zhong Guo ◽  
Hui Wang ◽  
...  

The true stress-strain curves of 2198-T3 aluminum-lithium alloy in three different orientations (0°,45° and 90°) were measured by uniaxial tensile test. Finite element analysis technique was used to simulate the forming process of irregular cup, and the hydro forming experiments were conducted with YB32-100t press machine. The results showed that the key forming parameter-n values were similar in three orientations. Simulation results illustrated that the thickness of the blank reached the lowest value at the round corner. Experimental results verified friction was a significant factor to manufacture a qualified competent. Meanwhile, the experimental results agreed well with the simulation ones. The practical thickness distribution of 2198-T3 irregular cup along the section line was coincided with simulation.


Author(s):  
Jacob Dybwad ◽  
Rikard To¨rnqvist ◽  
Erling O̸stby ◽  
Christian Thaulow

The purpose of the present paper is to present results from analyses of ductile tearing of biaxially loaded pipes subjected to large scale yielding. The paper deals with three dimensional finite element modelling of pipes with a circumferentially orientated surface crack, where the analyses aim to reproduce the crack propagation behaviour of six full scale bend tests of x-65 seamless pipes with different levels of internal overpressure. The tests were performed as a part of the joint industry project Fracture Control - Offshore Pipelines. Ductile tearing is taken into account by using the Gurson-Tvergaard-Needleman formulation, where calibration of the material model parameters is done by reproducing the fracture toughness test of a SENT-specimen of the same material with finite element modelling. The following simulations of the pipes show a good correspondence with the full scale test results, where both the global response and the ductile tearing from the crack are captured. One important result of the study is that the Gurson-Tvergaard-Needleman parameters that were calibrated against the SENT-specimen could successfully be used for the ductile tearing simulation of the full scale pipes.


1990 ◽  
Vol 55 (11) ◽  
pp. 2648-2661 ◽  
Author(s):  
Helena Sovová ◽  
Vladislav Bízek ◽  
Jaroslav Procházka

In this work measurements of mean holdup of dispersed phase, of axial holdup profiles and of flooding points in a reciprocating plate contactor with both the VPE-type plates and the sieve plates were carried out. The experimental results were compared with a monodisperse model of steady-state column hydrodynamics and the model parameters were evaluated. Important differences in the behaviour of the two plate types could be identified. Comparison was also made between two reciprocating drives of different pulse form.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1678
Author(s):  
Justyn Gach ◽  
Izabela Janus ◽  
Agnieszka Mackiewicz ◽  
Tomasz Klekiel ◽  
Agnieszka Noszczyk-Nowak

The mitral valve apparatus is a complex structure consisting of the mitral ring, valve leaflets, papillary muscles and chordae tendineae (CT). The latter are mainly responsible for the mechanical functions of the valve. Our study included investigations of the biomechanical and structural properties of CT collected from canine and porcine hearts, as there are no studies about these properties of canine CT. We performed a static uniaxial tensile test on CT samples and a histopathological analysis in order to examine their microstructure. The results were analyzed to clarify whether the changes in mechanical persistence of chordae tendineae are combined with the alterations in their structure. This study offers clinical insight for future research, allowing for an understanding of the process of chordae tendineae rupture that happens during degenerative mitral valve disease—the most common heart disease in dogs.


Sign in / Sign up

Export Citation Format

Share Document