Towards a Viable Field Deployable Ultrasonic Technique for Detection of Type IV Creep Damage in CSEF Steels at an Early Stage

Author(s):  
Harendra Kumar ◽  
Jack W. Lambert ◽  
Channa Nageswaran ◽  
Hari Babu Nadendla ◽  
Tat-Hean Gan

Abstract It is now apparent that welds in many of the creep strength enhanced ferritic (CSEF) steel grades are susceptible to Type IV creep damage. Furthermore, due to the complex nature of incubation and growth of localized creep damage in such alloys, state-of-the-practice non-invasive techniques such as hardness, replication and strain measurement alone are insufficient for reliable assessment. Consequently, there is concern in the industry regarding the integrity of existing and proposed installations that utilize CSEF steels such as ASME Grade 91 and Grade 92. To address this concern, in addition to pressing demands for increased efficiency and from environmental regulation, extensive research is underway on various fronts including fracture assessment, online health monitoring and life extension technologies. These rely heavily on the effectiveness of non-destructive testing (NDT) techniques. Therefore, volumetric non-invasive techniques that enable detection and characterization of damage are sought to facilitate effective assessment of welded components operating at high temperature and pressure. Several NDT methods were reviewed in order to understand the current state-of-the-art in terms of their sensitivity to early stage Type IV damage and their readiness for field implementation. Most of the advanced methods proposed for assessment of creep damage are based on the inversion of certain parameters to correlate to the extent of damage. This limits their selectivity, ability to characterize and determine the severity of localized damage. Using recent developments in electronics and signal processing instrumentation, ultrasonic testing was identified as having the potential to be developed as a reliable approach for detection of Type IV creep damage at an early stage. This paper presents the outcome of an industry-focused research effort with the goal of developing and validating an ultrasonic technique for reliable detection of Type IV creep damage at an early stage. In this framework, supported by the Core Research Programme at TWI, an ultrasonic technique was developed and tested on a number of creep-exposed specimens. Ultrasonic data was processed and correlated with controlled metallographic investigations to determine the detection, positioning and characterization performance of Type IV creep damage within the heat affected zone of welds.

2020 ◽  
pp. 224-232
Author(s):  
E. A. Kulebina ◽  
A. N. Surkov

Fibrosis and cirrhosis are traditionally diagnosed by making a biopsy. However, in recent decades, scientists around the world have shown that the accepted “gold standard of diagnosis” – morphological assessment of biopsy – has a number of limitations. The search for non-invasive techniques to diagnose fibrosis has led to the development of many scales using laboratory indices. Non-invasive diagnostic techniques are safer for the patient than liver biopsy. In addition, they can be repeated in a dynamic to assess the condition of the liver over time. Most currently available non-invasive diagnostic techniques are considerably cheaper than the accepted “gold standard”. Their practical use is increasing every year, and in a number of countries the frequency of liver biopsies in viral hepatitis B and C is steadily decreasing due to the development of serum and imaging diagnostic systems. Recent studies show that the assessment of the degree of fibrosis by non-invasive methods is as accurate as a morphological study. In recent years, a number of serum markers have been considered as non-invasive diagnostics of the stages of liver fibrosis, among which the largest number of studies are devoted to hyaluronic acid, type IV collagen, and their combination with various common laboratory tests. The latest non-invasive techniques will make a significant paradigm shift in the evaluation of liver fibrosis in the near future. In this review we have analyzed widely used as well as experimental laboratory techniques used in the diagnosis of liver fibrosis.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Masaaki Tabuchi ◽  
Hiromichi Hongo ◽  
Yongkui Li ◽  
Takashi Watanabe ◽  
Yukio Takahashi

The creep strength of welded joints in high Cr steels decreases due to the formation of Type IV creep damage in heat-affected zones (HAZs) during long-term use at high temperatures. This paper aims to elucidate the processes and mechanisms of Type IV creep damage using Mod.9Cr–1Mo (ASME Grade 91) steel weldments. Long-term creep tests for base metal, simulated fine-grained HAZ, and welded joints were conducted at 550°C, 600°C, and 650°C. Furthermore, creep tests of thick welded joint specimens were interrupted at 0.1, 0.2, 0.5, 0.7, 0.8, and 0.9 of rupture life and damage distributions were measured quantitatively. It was found that creep voids were initiated at an early stage of life inside the specimen thickness and coalesced to form cracks at a later stage of life. Creep damage was observed mostly at 25% below the surface of the plate. Experimental creep damage distributions were compared with computed versions using finite element method and damage mechanics analysis. Both multi-axial stress state and strain concentration in fine-grained HAZ appear to influence the formation and distribution of creep voids.


Author(s):  
Masaaki Tabuchi ◽  
Hiromichi Hongo ◽  
Yongkui Li ◽  
Takashi Watanabe ◽  
Yukio Takahashi

The present paper aims to clarify the Type IV creep damage process of Mod.9Cr-1Mo (Gr.91) steel weldment. Long-term creep tests for base metal and simulated fine-grained HAZ and welded joints were conducted at 550, 600 and 650 °C. Furthermore, creep tests of thick welded joint specimens were interrupted at 0.2, 0.5, 0.7, 0.8, 0.9 of rupture life, and damage distributions were measured quantitatively. It was found that creep voids initiated at the early stage of life inside the specimen thickness, and grew into cracks at the later stage of life. Experimental creep damage distributions were compared with computed ones using FEM and damage mechanics analysis. The effect of multiaxial stress condition on creep damage evolution is discussed.


1997 ◽  
Vol 137 (4) ◽  
pp. 653-655 ◽  
Author(s):  
P. Autio ◽  
M. Turpeinen ◽  
J. Risteli ◽  
M. Kalliolnen ◽  
U. Kiistala ◽  
...  

2019 ◽  
Vol 19 (2) ◽  
pp. 105-111
Author(s):  
Nadia Shafei ◽  
Mohammad Saeed Hakhamaneshi ◽  
Massoud Houshmand ◽  
Siavash Gerayeshnejad ◽  
Fardin Fathi ◽  
...  

Background: Beta thalassemia is a common disorder with autosomal recessive inheritance. The most prenatal diagnostic methods are the invasive techniques that have the risk of miscarriage. Now the non-invasive methods will be gradually alternative for these invasive techniques. Objective: The aim of this study is to evaluate and compare the diagnostic value of two non-invasive diagnostic methods for fetal thalassemia using cell free fetal DNA (cff-DNA) and nucleated RBC (NRBC) in one sampling community. Methods: 10 ml of blood was taken in two k3EDTA tube from 32 pregnant women (mean of gestational age = 11 weeks), who themselves and their husbands had minor thalassemia. One tube was used to enrich NRBC and other was used for cff-DNA extraction. NRBCs were isolated by MACS method and immunohistochemistry; the genome of stained cells was amplified by multiple displacement amplification (MDA) procedure. These products were used as template in b-globin segments PCR. cff-DNA was extracted by THP method and 300 bp areas were recovered from the agarose gel as fetus DNA. These DNA were used as template in touch down PCR to amplify b-globin gen. The amplified b-globin segments were sequenced and the results compared with CVS resul. Results: The data showed that sensitivity and specificity of thalassemia diagnosis by NRBC were 100% and 92% respectively and sensitivity and specificity of thalassemia diagnosis by cff-DNA were 100% and 84% respectively. Conclusion: These methods with high sensitivity can be used as screening test but due to their lower specificity than CVS, they cannot be used as diagnostic test.


Author(s):  
Muhammad Nadeem Ashraf ◽  
Muhammad Hussain ◽  
Zulfiqar Habib

Diabetic Retinopathy (DR) is a major cause of blindness in diabetic patients. The increasing population of diabetic patients and difficulty to diagnose it at an early stage are limiting the screening capabilities of manual diagnosis by ophthalmologists. Color fundus images are widely used to detect DR lesions due to their comfortable, cost-effective and non-invasive acquisition procedure. Computer Aided Diagnosis (CAD) of DR based on these images can assist ophthalmologists and help in saving many sight years of diabetic patients. In a CAD system, preprocessing is a crucial phase, which significantly affects its performance. Commonly used preprocessing operations are the enhancement of poor contrast, balancing the illumination imbalance due to the spherical shape of a retina, noise reduction, image resizing to support multi-resolution, color normalization, extraction of a field of view (FOV), etc. Also, the presence of blood vessels and optic discs makes the lesion detection more challenging because these two artifacts exhibit specific attributes, which are similar to those of DR lesions. Preprocessing operations can be broadly divided into three categories: 1) fixing the native defects, 2) segmentation of blood vessels, and 3) localization and segmentation of optic discs. This paper presents a review of the state-of-the-art preprocessing techniques related to three categories of operations, highlighting their significant aspects and limitations. The survey is concluded with the most effective preprocessing methods, which have been shown to improve the accuracy and efficiency of the CAD systems.


2020 ◽  
Vol 16 (2) ◽  
pp. 138-152
Author(s):  
Bingren Zhang ◽  
Chu Wang ◽  
Chanchan Shen ◽  
Wei Wang

Background: Responses to external emotional-stimuli or their transitions might help to elucidate the scientific background and assist the clinical management of psychiatric problems, but pure emotional-materials and their utilization at different levels of neurophysiological processing are few. Objective: We aimed to describe the responses at central and peripheral levels in healthy volunteers and psychiatric patients when facing external emotions and their transitions. Methods: Using pictures and sounds with pure emotions of Disgust, Erotica, Fear, Happiness, Neutral, and Sadness or their transitions as stimuli, we have developed a series of non-invasive techniques, i.e., the event-related potentials, functional magnetic resonance imaging, excitatory and inhibitory brainstem reflexes, and polygraph, to assess different levels of neurophysiological responses in different populations. Results: Sample outcomes on various conditions were specific and distinguishable at cortical to peripheral levels in bipolar I and II disorder patients compared to healthy volunteers. Conclusions: Methodologically, designs with these pure emotions and their transitions are applicable, and results per se are specifically interpretable in patients with emotion-related problems.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Andy Sombke ◽  
Carsten H. G. Müller

Abstract Background The jointed appendage is a key novelty in arthropod evolution and arthropod legs are known to vary enormously in relation to function. Among centipedes, the ultimate legs always are distinctly different from locomotory legs, and different centipede taxa evolved different structural and functional modifications. In Geophilomorpha (soil centipedes), ultimate legs do not participate in locomotion and were interpret to serve a sensory function. They can be sexually dimorphic and in some species, male ultimate legs notably appear “hairy”. It can be assumed that the high abundance of sensilla indicates a pronounced sensory function. This study seeks for assessing the sensory diversity, however, documents the surprising and unique case of an extensive glandular epithelium in the ultimate legs of three phylogenetically distant species. Results The tightly aggregated epidermal glands with stalked ducts – mistakenly thought to be sensilla – were scrutinized using a multimodal microscopic approach comprising histology as well as scanning and transmission electron microscopy in Haplophilus subterraneus. Hence, this is the first detailed account on centipede ultimate legs demonstrating an evolutionary transformation into a “secretory leg”. Additionally, we investigated sensory structures as well as anatomical features using microCT analysis. Contrary to its nomination as a tarsus, tarsus 1 possesses intrinsic musculature, which is an indication that this podomere might be a derivate of the tibia. Discussion The presence and identity of ultimate leg associated epidermal glands with stalked ducts is a new discovery for myriapods. A pronounced secretory as well as moderate sensory function in Haplophilus subterraneus can be concluded. The set of characters will improve future taxonomic studies, to test the hypotheses whether the presence of these specialized glands is a common feature in Geophilomorpha, and that tarsus 1 may be a derivate of the tibia. As the number of epidermal glands with stalked ducts is sexually dimorphic, their function might be connected to reproduction or a sex-specific defensive role. Our results, in particular the unexpected discovery of ‘glandular hairs’, may account for a striking example for how deceptive morphological descriptions of epidermal organs may be, if based on non-invasive techniques alone.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Yuexin Wu ◽  
Yuyan Cao ◽  
Keren Xu ◽  
Yue Zhu ◽  
Yuemei Qiao ◽  
...  

AbstractLiver cirrhosis remains major health problem. Despite the progress in diagnosis of asymptomatic early-stage cirrhosis, prognostic biomarkers are needed to identify cirrhotic patients at high risk developing advanced stage disease. Liver cirrhosis is the result of deregulated wound healing and is featured by aberrant extracellular matrix (ECM) remodeling. However, it is not comprehensively understood how ECM is dynamically remodeled in the progressive development of liver cirrhosis. It is yet unknown whether ECM signature is of predictive value in determining prognosis of early-stage liver cirrhosis. In this study, we systematically analyzed proteomics of decellularized hepatic matrix and identified four unique clusters of ECM proteins at tissue damage/inflammation, transitional ECM remodeling or fibrogenesis stage in carbon tetrachloride-induced liver fibrosis. In particular, basement membrane (BM) was heavily deposited at the fibrogenesis stage. BM component minor type IV collagen α5 chain expression was increased in activated hepatic stellate cells. Knockout of minor type IV collagen α5 chain ameliorated liver fibrosis by hampering hepatic stellate cell activation and promoting hepatocyte proliferation. ECM signatures were differentially enriched in the biopsies of good and poor prognosis early-stage liver cirrhosis patients. Clusters of ECM proteins responsible for homeostatic remodeling and tissue fibrogenesis, as well as basement membrane signature were significantly associated with disease progression and patient survival. In particular, a 14-gene signature consisting of basement membrane proteins is potent in predicting disease progression and patient survival. Thus, the ECM signatures are potential prognostic biomarkers to identify cirrhotic patients at high risk developing advanced stage disease.


Sign in / Sign up

Export Citation Format

Share Document