Inspection Method of Finned Tube and Finned Heat Exchanger

2021 ◽  
Author(s):  
Ju Ding ◽  
Min Zhang ◽  
Shuhong Liu ◽  
Shenghui Wang ◽  
Jielu Wang

Abstract The finned tube heat exchanger is one of the earliest and most successful discoveries in the process of improving tube heat exchange. This method is still the most widely used of all kinds of tube heat transfer surface enhancement heat transfer methods. It is not only suitable for single-fin tube heat exchangers, which are widely used in power, chemical, petrochemical, air-conditioning engineering and refrigeration engineering. Conventional heat exchanger with smooth tubes can be inspected through the pressure test during the manufacturing process. Finned tubes and finned heat exchangers with inner thread structure have some difficult to pass the water pressure test. The same situation exists in regular inspections. Due to structural reasons, it is difficult to carry out regular surface inspections[1]. For these two situations, two different testing methods are required to ensure quality. This article introduces in detail the methods of inspecting finned tubes and finned heat exchangers. Hierarchical comparison of alternatives in hydrostatic testing project, and the eddy current detection technology of the finned tube under the condition of in-service air cooling. The far-field eddy current method is chosen for inspection. And by comparing the standard sample tube, it is mainly used to adjust the sensitivity of the eddy current detector and ensure the accuracy of the test results[2]. The results show that the eddy current detection technology can be more accurate and reliable. The corrosion of the finned tube under service air cooling is detected, and a reliable basis is provided for judging the use of the finned tube and finned heat exchanger[3].

2014 ◽  
Vol 18 (3) ◽  
pp. 863-874 ◽  
Author(s):  
Xueping Du ◽  
Yantao Yin ◽  
Min Zeng ◽  
Pengqing Yu ◽  
Qiuwang Wang ◽  
...  

A tremendous quantity of water can be saved if the air cooling system is used, comparing with the ordinary water-cooling technology. In this study, two kinds of finned tube heat exchangers in an indirect air-cooling tower are experimentally studied, which are a plain finned oval-tube heat exchanger and a wavy-finned flat-tube heat exchanger in a cross flow of air. Four different air inlet angles (90?, 60 ?, 45?, and 30?) are tested separately to obtain the heat transfer and resistance performance. Then the air-side experimental correlations of the Nusselt number and friction factor are acquired. The comprehensive heat transfer performances for two finned tube heat exchangers under four air inlet angles are compared. For the plain finned oval-tube heat exchanger, the vertical angle (90?) has the worst performance while 45? and 30? has the best performance at small ReDc and at large ReDc, respectively. For the wavy-finned flat-tube heat exchanger, the worst performance occurred at 60?, while the best performance occurred at 45? and 90? at small ReDc and at large ReDc, respectively. From the comparative results, it can be found that the air inlet angle has completely different effects on the comprehensive heat transfer performance for the heat exchangers with different structures.


Author(s):  
Anton Moisseytsev ◽  
Qiuping Lv ◽  
James J. Sienicki

The capability to utilize dry air cooling by which heat is directly rejected to the air atmosphere heat sink is one of the benefits of the supercritical carbon dioxide (sCO2) energy conversion cycle. For the selection and analysis of the heat exchanger options for dry air cooling applications for the sCO2 cycle, two leading forced air flow design approaches have been identified and analyzed for this application; an air cooler consisting of modular finned tube air coolers; and an air cooler consisting of modular compact diffusion-bonded heat exchangers. The commercially available modular finned tube air cooler is found to be more cost effective and is selected as the reference for dry air cooling.


2015 ◽  
Vol 23 (01) ◽  
pp. 1550007 ◽  
Author(s):  
Ryoji Katsuki ◽  
Tsutomu Shioyama ◽  
Chikako Iwaki ◽  
Tadamichi Yanazawa

We have been developing a free convection air cooled heat exchanger without power supply to improve economic efficiency and mechanical reliability. However, this heat exchanger requires a larger installation area than the forced draft type air cooled heat exchanger since a large heating surface is needed to compensate for the small heat transfer by natural convection. Therefore, we have been investigating a heat exchanger consisting of an array of finned tubes and chimney to increase the heat transfer coefficient. Since the heat transfer characteristics of finned tube arrays have not been clarified, we conducted experiments with a finned tube array to determine the relation between the configuration of finned tubes and the heat transfer coefficient of a tube array. The results showed that the average heat transfer coefficient increased with pitch in the vertical direction, and became constant when the pitch was over five times the fin diameter. The average heat transfer coefficient was about 1.4 times higher than that of a single finned tube in free space. The ratio of the average heat transfer coefficient of the finned tube array with chimney to that of a single finned tube was found to be independent of the difference in temperature between the tube surface and air.


2021 ◽  
pp. 10295-10338
Author(s):  
Yahya Yaser Shanyour AL-Salman, Ali Sabri Abbas

The thermal and flow performance of the circular annular finned tube heat exchanger with perforated fins were investigated numerically using ANSYS Fluent 2020 software, RNG k-e model with enhanced wall treatment, global performance criterion was introduced as evaluation factor of the heat exchanger performance, the parameters to be investigated were the number of holes, size of hole, tilt angle of the finned tube, fin height and spacing between fins. Agreement was found with literature that the tilt angle causes increase in heat transfer rate and increase in the pressure drop as well, but the change the global performance criterion as function to tilt angle depends on the fin heights, for higher fin heights the effective change of the pressure drop become greater than the increase in the heat transfer rate and the contrast occur in the cases of smaller fin heights, we have found that the perforation in tilted annular circular finned tubes causes an increase in the heat transfer rate and an enhancement in the total heat exchanger performance, increasing the number of holes will enhance the performance of the heat exchanger and the spacing increase reduces the heat exchanger performance.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Hie Chan Kang ◽  
Se-Myong Chang

This study proposes an empirical correlation for laminar natural convection applicable to external circular finned-tube heat exchangers with wide range of configuration parameters. The transient temperature response of the heat exchangers was used to obtain the heat transfer coefficient, and the experimental data with their characteristic lengths are discussed. The data lie in the range from 1 to 1000 for Rayleigh numbers based on the fin spacing: the ratio of fin height to tube diameter ranges from 0.1 to 0.9, and the ratio of fin pitch to height ranges from 0.13 to 2.6. Sixteen sets of finned-tube electroplated with nickel–chrome were tested. The convective heat transfer coefficients on the heat exchangers were measured by elimination of the thermal radiation effect from the heat exchanger surfaces. The Nusselt number was correlated with a newly suggested composite curve formula, which converges to the quarter power of the Rayleigh number for a single cylinder case. The proposed characteristic length for the Rayleigh number is the fin pitch while that for the Nusselt number is mean flow length, defined as half the perimeter of the mean radial position inside the flow region bounded by the tube surface and two adjacent fins. The flow is regarded as laminar, which covers heat exchangers from a single horizontal cylinder to infinite parallel disks. Consequently, the result of curve fitting for the experimental data shows the reasonable physical interpretation as well as the good quantitative agreement with the correction factors.


Author(s):  
K. Kawaguchi ◽  
K. Okui ◽  
Y. Hasegawa

In recent years the requirement for reduction of energy consumption has been increasing to solve the problems of the global warming and the shortage of petroleum resources. For example in the power generation field, as the thermal power generation occupied 60% of the power generation demand, the improvement of the thermal efficiency is required considerably. This paper described the heat transfer and pressure drop characteristics of the finned tube banks used for the heat exchanger in the thermal power generation. The characteristics were clarified by testing the serrated finned tubes banks for improvement of higher heat transfer and the conventional spiral finned tube banks under the same test conditions. The equations to predict heat transfer coefficient and pressure drop which are necessary on design of the heat exchanger were proposed.


1985 ◽  
Vol 107 (1) ◽  
pp. 198-204 ◽  
Author(s):  
P. W. Eckels ◽  
T. J. Rabas

The heat transfer and pressure drop performance of heat exchangers fabricated from helically wrapped finned tubes with an equilateral triangular pitch arrangement are reported for one through five rows. Two finned tube types were tested, one with a “T” foot and the other with an overlapped “L” foot. The dimensions of both finned tubes were similar and were typical of those used in air-cooling applications. The tube diameter was 25.4 mm; the fin height was 15.87 mm; the fin number was 0.41/mm; and the fin-tip clearance was 6.35 mm. The fin base thickness was 0.38 mm and was tapered to half the base thickness at the fin outside diameter. No difference in the thermal performance of the two finned tube types could be detected. Both the heat transfer coefficient and pressure drop were found to increase with the number of tube rows. These results were then compared to other published data.


2018 ◽  
Vol 6 (3) ◽  
pp. 1-12
Author(s):  
Kamil Abdul Hussien

Abstract-The present work investigates the enhancement of heat transfer by using different number of circular fins (8, 10, 12, 16, and 20) in double tube counter flow heat exchanger experimentally. The fins are made of copper with dimensions 66 mm OD, 22 mm ID and 1 mm thickness. Each fin has three of 14 mm diameter perforations located at 120o from each to another. The fins are fixed on a straight smooth copper tube of 1 m length, 19.9 mm ID and 22.2 mm OD. The tube is inserted inside the insulated PVC tube of 100 mm ID. The cold water is pumped around the finned copper tube, inside the PVC, at mass flow rates range (0.01019 - 0.0219) kg/s. The Reynold's number of hot water ranges (640 - 1921). The experiment results are obtained using six double tube heat exchanger (1 smooth tube and the other 5 are finned one). The results, illustrated that the heat transfer coefficient proportionally with the number of fin. The results also showed that the enhancement ratio of heat transfer for finned tube is higher than for smooth tube with (9.2, 10.2, 11.1, 12.1 13.1) times for number of fins (8, 10, 12, 16 and 20) respectively.


Author(s):  
H. Zabiri ◽  
V. R. Radhakrishnan ◽  
M. Ramasamy ◽  
N. M. Ramli ◽  
V. Do Thanh ◽  
...  

The Crude Preheat Train (CPT) is a set of large heat exchangers which recover the waste heat from product streams back to preheat the crude oil. The overall heat transfer coefficient in these heat exchangers may be significantly reduced due to fouling. One of the major impacts of fouling in CPT operation is the reduced heat transfer efficiency. The objective of this paper is to develop a predictive model using statistical methods which can a priori predict the rate of the fouling and the decrease in heat transfer efficiency in a heat exchanger in a crude preheat train. This predictive model will then be integrated into a preventive maintenance diagnostic tool to plan the cleaning of the heat exchanger to remove the fouling and bring back the heat exchanger efficiency to their peak values. The fouling model was developed using historical plant operating data and is based on Neural Network. Results show that the predictive model is able to predict the shell and tube outlet temperatures with excellent accuracy, where the Root Mean Square Error (RMSE) obtained is less than 1%, correlation coefficient R2 of approximately 0.98 and Correct Directional Change (CDC) values of more than 90%. A preliminary case study shows promising indication that the predictive model may be integrated into a preventive maintenance scheduling for the heat exchanger cleaning.


Author(s):  
Ignacio Carvajal-Mariscal ◽  
Florencio Sanchez-Silva ◽  
Georgiy Polupan

In this work the heat transfer and pressure drop experimental results obtained in a two step finned tube bank with conical fins are presented. The tube bank had an equilateral triangle array composed of nine finned tubes with conical fins inclined 45 degrees in respect with the tube axis. The heat exchange external area of a single tube is approximately 0.07 m2. All necessary thermal parameters, inlet/outlet temperatures, mass flows, for the heat balance in the tube bank were determined for different air velocities, Re = 3400–18400, and one constant thermal charge provided by a hot water flow with a temperature of 80 °C. As a result, the correlations for the heat transfer and pressure drop calculation were obtained. The experimental results were compared against the analytical results for a tube bank with annular fins with the same heat exchange area. It was found that the proposed tube bank using finned tubes with conical fins shows an increment of heat transfer up to 58%.


Sign in / Sign up

Export Citation Format

Share Document