Development of Analytical Models for Railroad Tank Car Impact and Puncture Behaviors

Author(s):  
Steven W. Kirkpatrick ◽  
Joseph M. Munaretto ◽  
Virginia Phan ◽  
Robert A. MacNeill

There has been significant research in recent years to analyze and improve the impact behavior and puncture resistance of railroad tank cars. Much of this research has been performed using detailed nonlinear finite element analyses supported by full scale impact testing. This use of detailed simulation methodologies has significantly improved our understanding of the tank impact behaviors and puncture safety. However, the performance of the detailed analyses or full scale testing can require significant computer or financial resources to evaluate a wide range of impact scenarios. This paper describes the development of analytical models that can predict the impact and puncture behavior of a pressurized railroad tank car. The methodology applied is to first develop a model that can predict the force-deflection behavior obtained from a general impact at any point on the tank. Separately, a characteristic puncture force is determined as a function of the tank geometry, impactor geometry, and impact conditions. Combined, these models can be applied to predict the impact and puncture behavior of the tank.

Author(s):  
Steven W. Kirkpatrick ◽  
Francisco Gonzalez ◽  
Karl Alexy

There has been significant research in recent years to analyze and improve the impact behavior and puncture resistance of railroad tank cars. Much of this research has been performed using detailed nonlinear finite element analyses supported by full scale impact testing. This use of detailed simulation methodologies has significantly improved our understanding of the tank impact behaviors and puncture prediction. However, the evaluations in these past studies were primarily performed for a few idealized impact scenarios. This paper describes a research program to evaluate railroad tank car puncture behaviors under more general impact conditions. The approach used in this research program was to apply a tank impact and puncture prediction capability using detailed finite element analyses (FEA). The analysis methodologies apply advanced damage and failure models that were validated by series of material tests under various loading conditions. In this study, the analyses were applied to investigate the tank puncture behaviors for a wide range of impact conditions.


Author(s):  
Steven W. Kirkpatrick ◽  
Robert A. MacNeill ◽  
Francisco Gonzalez

There has been significant research in recent years to analyze and improve the impact behavior and puncture resistance of railroad tank cars. Ultimately, the results of this work will be used by the Government regulatory agencies in the United States and Canada to establish performance-based testing requirements and to develop methods to evaluate the crashworthiness and structural integrity of different tank car designs. This paper describes analyses of current impact testing requirements and impact test methodologies using detailed finite element analyses (FEA). The results of these analyses are used to identify characteristics of the test methodologies that are desirable or undesirable for the test requirements in future tank car safety regulations.


2018 ◽  
Vol 51 (1) ◽  
pp. 64-74 ◽  
Author(s):  
Akar Dogan ◽  
Yusuf Arman

In this study, the effects of temperature and impactor nose diameter on the impact behavior of woven glass-reinforced polyamide 6 (PA6) and polypropylene (PP) thermoplastic composites were investigated experimentally. Impact energies are chosen as 10, 30, 50, 70, 90, 110, 130, and 170 J. The thickness of composite materials is 4 mm. Impact tests were performed using a drop weight impact testing machine, CEAST-Fractovis Plus, and the load capacity of test machine is 22 kN. Hemispherical impactor nose diameter of 12, 7, and 20 mm were used as an impactor. The tests are conducted at room temperature (20°C and 75°C). As a result, the PP composites of the same thickness absorbed more energy than PA6 composites. The amount of absorbed energy of PP and PA6 composites decreased with temperature.


2021 ◽  
Author(s):  
Zhihai Sun ◽  
Jiaxi Liu ◽  
Ying Zhang ◽  
Ziyuan Li ◽  
Leyu Peng ◽  
...  

Abstract Van der Waals (VDW) heterostructures have attracted significant research interest due to their tunable interfacial properties and potential in a wide range of applications such as electronics, optoelectronic, and heterocatalysis. In this work, the impact of interfacial defects on the electronic structures and photocatalytic properties of hBN/MX2(M = Mo, W, and X = S, Se) are studied using density functional theory calculations. The results reveal that the band alignment of hBN/MX2 can be adjusted by introducing vacancies and atomic doping. The type-I band alignment of the host structure was maintained in the heterostructure with n-type doping in the hBN sublayer. Interestingly, the band alignment changed to the type-II heterostructrue as VB defect and p-type doping was introduced in the hBN sublayer. This could be profitable for the separation of photo-generated electron−hole pairs at the interfaces and is highly desired for heterostructure photocatalysis. In addition, two Z-type heterostructures including hBN(BeB)/MoS2, hBN(BeB)/MoSe2, and hBN(VN)/MoSe2 were achieved, showing reducing band gap and ideal redox potential for water splitting. Our results reveal the possibility of engineering the interfacial and photocatalysis properties of hBN/MX2 heterostructures via interfacial defects.


Author(s):  
V. Patlolla ◽  
J. George ◽  
Soo-Han Loo ◽  
R. Asmatulu

The purpose of this research was to determine the influence of material properties on the impact response of a laminate, whereby specimens were fabricated and cured under a vacuum and high temperature using three types of pre-impregnated (prepreg), carbon fibers, namely unidirectional fiber, plain weave woven fiber, and non-crimp fiber (NCF). Each carbon fiber panel, usually known for its low-impact properties, of 16 plies underwent impact testing using a low-velocity impactor and visual damage inspection by C-scan in order to measure the damage area and depth, before and after impact testing. These panels were treated with UV exposure and moisture conditioning for 20 days each. Water contact angles were taken into consideration to determine the hydrophobicity and hydrophillicity of the respective prepreg materials. Experimental results and damage analysis showed that UV exposure and moisture conditioning showcased the variation in impact response and behavior, such as load-carrying capacity, absorbed energy, and impact energy of the carbon fiber panels. This study illustrates that non-crimp carbon fiber laminates were far more superior relative to load capacity than woven and unidirectional laminates, with the NCF-AS laminate exhibiting the highest load capacity of 17,244 lb/in (pre-UV) with only 0.89% decrease after UV exposure. This same laminate also had a 1.54% decrease in sustaining impact and 31.4% increase in wettability of the panel. Moreover, the study shows how symmetric and asymmetric stacking sequences affect the impact behavior of non-crimp fiber laminates. These results may be useful for expanding the capacity of carbon fiber, lowering costs, and growing new markets, thus turning carbon fiber into a viable commercial product.


2015 ◽  
Author(s):  
Ali Mohtat ◽  
Ravi Challa ◽  
Solomon C. Yim ◽  
Carolyn Q. Judge

Numerical simulation and prediction of short duration hydrodynamic impact loading on a generic wedge impacting a water free-surface is investigated. The fluid field is modeled using a finite element (FE) based arbitrary Lagrangian-Eulerian (ALE) formulation and the structure is modeled using a standard Lagrangian FE approximation. Validation of the numerical method against experimental test data and closed form analytical solutions shows that the ALE-FE/FE continuum approach captures the impact behavior accurately. A detailed sensitivity analysis is conducted to study the role of air compressibility, deadrise angle, and impact velocity in estimation of maximum impact pressures. The pressure field is found to be insensitive to air compressibility effect for a wide range of impact velocities and deadrise angles. A semi-analytical prediction model is developed for estimation of maximum impact pressures that correlates deadrise angle, impact velocity, and a nonlinear interaction term that couples hydrodynamic effects between these parameters. The numerical method is also used to examine the intrinsic physics of water impact on a high-speed planing hull with the goal of predicting slamming loads and resulting motions.


Author(s):  
Patricia Llana ◽  
Karina Jacobsen

Research to develop new technologies for increasing the safety of passengers and crew in rail equipment is being directed by the Federal Railroad Administration’s (FRA’s) Office of Research, Development, and Technology. Crash energy management (CEM) components which can be integrated into the end structure of a locomotive have been developed: a push-back coupler and a deformable anti-climber. These components are designed to inhibit override in the event of a collision. The results of vehicle-to-vehicle override, where the strong underframe of one vehicle, typically a locomotive, impacts the weaker superstructure of the other vehicle, can be devastating. These components are designed to improve crashworthiness for equipped locomotives in a wide range of potential collisions, including collisions with conventional locomotives, conventional cab cars, and freight equipment. Concerns have been raised in discussions with industry that push-back couplers may trigger prematurely, and may require replacement due to unintentional activation as a result of service loads. Push-back couplers (PBCs) are designed with trigger loads meant to exceed the expected maximum service loads experienced by conventional couplers. Analytical models are typically used to determine these required trigger loads. Two sets of coupling tests have been conducted to demonstrate this, one with a conventional locomotive equipped with conventional draft gear and coupler, and another with a conventional locomotive retrofit with a push-back coupler. These tests will allow a performance comparison of a conventional locomotive with a CEM-equipped locomotive during coupling. In addition to the two sets of coupling tests, car-to-car compatibility tests of CEM-equipped locomotives, as well as a train-to-train test are also planned. This arrangement of tests allows for evaluation of the CEM-equipped locomotive performance, as well as comparison of measured with simulated locomotive performance in the car-to-car and train-to-train tests. The coupling tests of a conventional locomotive have been conducted, the results of which compared favorably with pre-test predictions. This paper describes the results of the CEM-equipped locomotive coupling tests. In this set of tests, a moving CEM locomotive was coupled to a standing cab car. The primary objective was to demonstrate the robustness of the PBC design and determine the impact speed at which PBC triggering occurs. The coupling speed was increased for each subsequent test until the PBC triggered. The coupling speeds targeted for the test were 2 mph, 4 mph, 6 mph, 7 mph, 8 mph, and 9 mph. The coupling speed at which the PBC triggered was 9 mph. The damage observed resulting from the coupling tests is described. Prior to the tests, a lumped-mass model was developed for predicting the longitudinal forces acting on the equipment and couplers. The test results are compared to the model predictions. Next steps in the research program, including future full-scale dynamic tests, are discussed.


Author(s):  
Michael Carolan ◽  
Benjamin Perlman ◽  
Francisco González

The U.S. Department of Transportation’s Federal Railroad Administration (FRA) has sponsored a series of full-scale dynamic shell impact tests to railroad tank cars. Currently, there are no required finite element (FE) model validation criteria or procedures in the field of railroad tank car puncture testing and simulation. Within the shell impact testing program sponsored by FRA, comparisons made between test measurements and simulation results have included the overall force-time or force-indentation histories, the puncture/non-puncture outcomes, the rigid body motions of the tank car, the internal pressures within the lading, and the energy absorbed by the tank during the impact. While qualitative comparisons (e.g. the shapes of the indentation) and quantitative comparisons (e.g. peak impact forces) have been made between tests and simulations, there are currently no requirements or guidelines on which specific behaviors should be compared, or what measurable level of agreement would be acceptable demonstration of model validation. It is desirable that a framework for model validation, including well-defined criteria for comparison, be developed or adopted if simulation is to be used without companion shell impact testing for future tank car development. One of the challenges to developing model validation criteria and procedures for tank car shell puncture is the number of complex behaviors encountered in this problem, and the variety of approaches that could be used in simulating these behaviors. The FE models used to simulate tank car shell impacts include several complex behaviors, each of which can introduce uncertainty into the overall response of the model. These behaviors include dynamic impacts, non-linear steel material behavior, including ductile tearing, two-phase (water and air) fluid-structure interaction, and contact between rigid and deformable bodies. Several candidate qualitative and quantitative comparisons of test measurements and simulations results are discussed in this paper. They are applied to two recently-completed shell impact tests of railroad tank cars sponsored by FRA. For each test, companion FE simulation was performed by the Volpe National Transportation Systems Center. The process of FE model development, including material characterization, is discussed in detail for each FE model. For each test, the test objectives, procedures, and key instrumentation are summarized. For each set of test and simulations, several corresponding results are compared between the test measurements and the simulation results. Additionally, this paper includes discussion of approaches to model validation employed in other industries or areas of transportation where similar modeling aspects have been encountered.


2018 ◽  
Vol 1 (3-4) ◽  
pp. 114-119 ◽  
Author(s):  
Guldemet Basal Bayraktar ◽  
◽  
Ata Kianoosh ◽  
Derya Bilen ◽  
◽  
...  

A honeycomb woven fabric was designed and produced on a sampling loom. After weaving cells in the fabric were opened by polytetrafluoroethylene (PTFE) sticks and an epoxy resin was applied to fabric. For comparison half of the fabric sample was impregnated with resin without opening the cells. Resulting fabric samples were subjected to low-velocity impact test by using drop weight impact testing machine, CEAST Fractovis Plus – 7526.000. To evaluate the impact behavior of the samples the contact force, contact time, deflection, and absorbed energy values were recorded by data acquisition system (DAS). The energy absorbed by honeycomb structure was around 7 Joule. The energy absorbed by flat sample, on the other hand, was too low and out of the detection range of the testing equipment.


2021 ◽  
Vol 21 (6) ◽  
pp. 9-19
Author(s):  
Kyoungju Kim ◽  
Hyunung Bae ◽  
Jongmin Kim

Transition is a type of barrier that connects other barriers with different grades and shapes. Even if each barrier satisfies the performance, it may not be satisfied in transition. Therefore, collision safety requires a special design and examination. In this study, we investigated national and foreign standards and situations for the proper configuration of the transition and analyzed the impact behavior of the general transition using impact simulations. We developed a transition system that could ensure the stable performance of various grades by analyzing the behavior and confirmed based on the full-scale crash test (SB2 level).


Sign in / Sign up

Export Citation Format

Share Document