High-Throughput Cell Imaging, Counting and Characterization on a Chip

Author(s):  
Ting-Wei Su ◽  
Sungkyu Seo ◽  
Anthony Erlinger ◽  
Aydogan Ozcan

We introduce a lensfree on chip imaging platform that enables high-throughput monitoring, counting, and identification of several different microscopic objects such as different cell types within a heterogeneous solution. This imaging platform can in principle be miniaturized to a hand-held device that can be used by minimally trained health care providers at the point-of-care to measure the cell count of e.g., red blood cells from whole blood samples with a counting speed of >100,000 cells/sec. This novel optical imaging platform can also be merged with microfluidic systems to be able to rapidly monitor and count hundreds of thousand of cells within a field-of-view (FOV) of ∼10 cm2 in vitro. The immediate impact of this lensfree on chip cell counting approach is its improved speed, significantly larger field-of-view and simplified design that permits considerable miniaturization of the entire cell counting device.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Miles T. Rogers ◽  
Ashley L. Gard ◽  
Robert Gaibler ◽  
Thomas J. Mulhern ◽  
Rivka Strelnikov ◽  
...  

AbstractMicrophysiological organ-on-chip models offer the potential to improve the prediction of drug safety and efficacy through recapitulation of human physiological responses. The importance of including multiple cell types within tissue models has been well documented. However, the study of cell interactions in vitro can be limited by complexity of the tissue model and throughput of current culture systems. Here, we describe the development of a co-culture microvascular model and relevant assays in a high-throughput thermoplastic organ-on-chip platform, PREDICT96. The system consists of 96 arrayed bilayer microfluidic devices containing retinal microvascular endothelial cells and pericytes cultured on opposing sides of a microporous membrane. Compatibility of the PREDICT96 platform with a variety of quantifiable and scalable assays, including macromolecular permeability, image-based screening, Luminex, and qPCR, is demonstrated. In addition, the bilayer design of the devices allows for channel- or cell type-specific readouts, such as cytokine profiles and gene expression. The microvascular model was responsive to perturbations including barrier disruption, inflammatory stimulation, and fluid shear stress, and our results corroborated the improved robustness of co-culture over endothelial mono-cultures. We anticipate the PREDICT96 platform and adapted assays will be suitable for other complex tissues, including applications to disease models and drug discovery.


Author(s):  
Sungkyu Seo ◽  
Ting-Wei Su ◽  
Anthony Erlinger ◽  
Aydogan Ozcan

We describe a high-throughput lensfree optical imaging system that can characterize numerous cell types found within a heterogeneous mixture. Here, we specifically discuss the effect of the refractive index of the substrate material on the performance of the proposed lensfree optical cell characterization platform. It is experimentally illustrated that the use of high index materials such as SrTiO3 significantly improves the signal-to-noise ratio of the acquired lensfree images, which is a significant step towards more robust high-throughput cell analysis and characterization. The imaging configuration of the reported high-index material based characterization scheme is massively parallel enabling a cell counting speed of >100,000 cells/sec over a field of view of ∼10 cm2. This novel system can also form the basic building block of a simple and compact point-of-care cell counting technology that can be made as small as a regular cell-phone to rapidly measure the count of e.g., red blood cells or T-lymphocytes from whole blood samples. Such a powerful point-of-care platform may have a significant impact especially for global health related problems in the developing world.


2014 ◽  
Vol 19 (10) ◽  
pp. 1402-1408 ◽  
Author(s):  
Stephanie D. Cole ◽  
Janna S. Madren-Whalley ◽  
Albert P. Li ◽  
Russell Dorsey ◽  
Harry Salem

In vitro models that accurately and rapidly assess hepatotoxicity and the effects of hepatic metabolism on nonliver cell types are needed by the U.S. Department of Defense and the pharmaceutical industry to screen compound libraries. Here, we report the first use of high content analysis on the Integrated Discrete Multiple Organ Co-Culture (IdMOC) system, a high-throughput method for such studies. We cultured 3T3-L1 cells in the presence and absence of primary human hepatocytes, and exposed the cultures to 4-aminophenol and cyclophosphamide, model toxicants that are respectively detoxified and activated by the liver. Following staining with calcein-AM, ethidium homodimer-1, and Hoechst 33342, high content analysis of the cultures revealed four cytotoxic endpoints: fluorescence intensities of calcein-AM and ethidium homodimer-1, nuclear area, and cell density. Using these endpoints, we observed that the cytotoxicity of 4-aminophenol in 3T3-L1 cells in co-culture was less than that observed for 3T3-L1 monocultures, consistent with the known detoxification of 4-aminophenol by hepatocytes. Conversely, cyclophosphamide cytotoxicity for 3T3-L1 cells was enhanced by co-culturing with hepatocytes, consistent with the known metabolic activation of this toxicant. The use of IdMOC plates combined with high content analysis is therefore a multi-endpoint, high-throughput capability for measuring the effects of metabolism on toxicity.


2021 ◽  
Author(s):  
Chiara Elia Ghezzi ◽  
Devon R Hartigan ◽  
Justin Hardick ◽  
Rebecca Gore ◽  
Miryam Adelfio ◽  
...  

During the COVID-19 public health emergency, many actions have been undertaken to help ensure that patients and health care providers had timely and continued access to high-quality medical devices to respond effectively. The development and validation of new testing supplies and equipment, including collection swab, help expand the availability and capability for various diagnostic, therapeutic, and protective medical devices in high demand during the COVID-19 emergency. Here, we report the validation of a new injection-molded anterior nasal swab, ClearTip™, that was experimentally validated in a laboratory setting as well as in independent clinical studies in comparison to gold standard flocked swabs. We have also developed an in vitro anterior nasal tissue model, that offers an efficient and clinically relevant validation tool to replicate with high fidelity the clinical swabbing workflow, while being accessible, safe, reproducible, time and cost effective. ClearTi™ displayed a greater efficiency of release of inactivated virus in the benchtop model, confirmed by greater ability to report positive samples in a clinical study in comparison to flocked swabs. We also quantified in multi-center pre-clinical and clinical studies the detection of biological materials, as proxy for viral material, that showed a statistically significant difference in one study and a slight reduction in performance in comparison to flocked swabs. Taken together these results underscore the compelling benefits of non-absorbent injected molded anterior nasal swab for COVID-19 detection, comparable to standard flocked swabs. Injection-molded swabs, as ClearTip™, could have the potential to support future swab shortage, due to its manufacturing advantages, while offering benefits in comparison to highly absorbent swabs in terms comfort, limited volume collection, and potential multiple usage.


Diagnostics ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 206
Author(s):  
Chiara E. Ghezzi ◽  
Devon R. Hartigan ◽  
Justin P. Hardick ◽  
Rebecca Gore ◽  
Miryam Adelfio ◽  
...  

During the COVID-19 public health emergency, many actions have been undertaken to help ensure that patients and health care providers have timely and continued access to high-quality medical devices to respond effectively. The development and validation of new testing supplies and equipment, including collection swabs, has helped to expand the availability and capability for various diagnostic, therapeutic, and protective medical devices in high demand during the COVID-19 emergency. Here, we report the initial validation of a new injection-molded anterior nasal swab, ClearTip™, that was experimentally validated in a laboratory setting as well as in independent clinical studies in comparison to gold standard flocked swabs. We have also developed an in vitro anterior nasal tissue model which offers a novel, efficient, and clinically relevant validation tool to replicate the clinical swabbing workflow with high fidelity, while being accessible, safe, reproducible, and time- and cost-effective. ClearTip™ displayed greater inactivated virus release in the benchtop model, confirmed by its greater ability to report positive samples in a small clinical study in comparison to flocked swabs. We also quantified the detection of biological materials, as a proxy for viral material, in multi-center pre-clinical and clinical studies which showed a statistically significant difference in one study and a reduction in performance in comparison to flocked swabs. Taken together, these results emphasize the compelling benefits of non-absorbent injection-molded anterior nasal swabs for COVID-19 detection, comparable to standard flocked swabs. Injection-molded swabs, as ClearTip™, could have the potential to support future swab shortages, due to its manufacturing advantages, while offering benefits in comparison to highly absorbent swabs in terms of comfort, limited volume collection, and potential multiple usage.


Author(s):  
Bill Doolin

The application of information and communication technology to support health care organization, management, and delivery is high on the health policy agenda in many countries, and its implementation has become a significant issue. Despite optimistic expectations and increasing investment in e-health, the anticipated benefits are often elusive. This chapter reviews the factors driving the development of e-health before introducing a conceptualization of e-health focused on the management and use of health care information at the point of care, between health care providers and, ultimately, by health care consumers. The chapter then explores a range of issues that render e-health implementation problematic. In particular, implementing e-health is both a complex and emergent process that requires consideration of local health care contexts, and a socio-technical problem involving changes in work processes, interactions, and behaviors.


Biomolecules ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 430 ◽  
Author(s):  
AL-Ishaq ◽  
Abotaleb ◽  
Kubatka ◽  
Kajo ◽  
Büsselberg

Diabetes mellitus (DM) is a prevailing global health metabolic disorder, with an alarming incidence rate and a huge burden on health care providers. DM is characterized by the elevation of blood glucose due either to a defect in insulin synthesis, secretion, binding to receptor, or an increase of insulin resistance. The internal and external factors such as obesity, urbanizations, and genetic mutations could increase the risk of developing DM. Flavonoids are phenolic compounds existing as secondary metabolites in fruits and vegetables as well as fungi. Their structure consists of 15 carbon skeletons and two aromatic rings (A and B) connected by three carbon chains. Flavonoids are furtherly classified into 6 subclasses: flavonols, flavones, flavanones, isoflavones, flavanols, and anthocyanidins. Naturally occurring flavonoids possess anti-diabetic effects. As in vitro and animal model’s studies demonstrate, they have the ability to prevent diabetes and its complications. The aim of this review is to summarize the current knowledge addressing the antidiabetic effects of dietary flavonoids and their underlying molecular mechanisms on selected pathways: Glucose transporter, hepatic enzymes, tyrosine kinase inhibitor, AMPK, PPAR, and NF-κB. Flavonoids improve the pathogenesis of diabetes and its complications through the regulation of glucose metabolism, hepatic enzymes activities, and a lipid profile. Most studies illustrate a positive role of specific dietary flavonoids on diabetes, but the mechanisms of action and the side effects need more clarification. Overall, more research is needed to provide a better understanding of the mechanisms of diabetes treatment using flavonoids.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Khushboo Qaim Ali ◽  
Sajid Bashir Soofi ◽  
Ali Shabbir Hussain ◽  
Uzair Ansari ◽  
Shaun Morris ◽  
...  

Abstract Background Simulators are an extensively utilized teaching tool in clinical settings. Simulation enables learners to practice and improve their skills in a safe and controlled environment before using these skills on patients. We evaluated the effect of a training session utilizing a novel intubation ultrasound simulator on the accuracy of provider detection of tracheal versus esophageal neonatal endotracheal tube (ETT) placement using point-of-care ultrasound (POCUS). We also investigated whether the time to POCUS image interpretation decreased with repeated simulator attempts. Methods Sixty neonatal health care providers participated in a three-hour simulator-based training session in the neonatal intensive care unit (NICU) of Aga Khan University Hospital (AKUH), Karachi, Pakistan. Participants included neonatologists, neonatal fellows, pediatric residents and senior nursing staff. The training utilized a novel low-cost simulator made with gelatin, water and psyllium fiber. Training consisted of a didactic session, practice with the simulator, and practice with intubated NICU patients. At the end of training, participants underwent an objective structured assessment of technical skills (OSATS) and ten rounds of simulator-based testing of their ability to use POCUS to differentiate between simulated tracheal and esophageal intubations. Results The majority of the participants in the training had an average of 7.0 years (SD 4.9) of clinical experience. After controlling for gender, profession, years of practice and POCUS knowledge, linear mixed model and mixed effects logistic regression demonstrated marginal improvement in POCUS interpretation over repeated simulator testing. The mean time-to-interpretation decreased from 24.7 (SD 20.3) seconds for test 1 to 10.1 (SD 4.5) seconds for Test 10, p < 0.001. There was an average reduction of 1.3 s (β = − 1.3; 95% CI: − 1.66 to − 1.0) in time-to-interpretation with repeated simulator testing after adjusting for the covariates listed above. Conclusion We found a three-hour simulator-based training session had a significant impact on technical skills and performance of neonatal health care providers in identification of ETT position using POCUS. Further research is needed to examine whether these skills are transferable to intubated newborns in various health settings. Trial registration ClinicalTrials.gov Identifier: NCT03533218. Registered May 2018.


2020 ◽  
Vol 14 (S 01) ◽  
pp. S123-S129 ◽  
Author(s):  
Hiba Hamid ◽  
Zohaib Khurshid ◽  
Necdet Adanir ◽  
Muhammad S. Zafar ◽  
Sana Zohaib

AbstractNovel coronavirus disease 2019 (COVID-19) outbreak has termed as a controllable pandemic, and the entire world has come to a standstill trying to mitigate the disease with health systems. Health care providers, around the globe, are fighting day and night. Currently, rapid testing is taking place with the help of nasopharyngeal, oropharyngeal swab, bronchoalveolar lavage, sputum, urine, and blood. All these approaches are invasive or embarrassing to the infected person. It is observed that salivary glands are hosting severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) because of angiotensin-converting enzyme 2 and the detection of high viral loads in the saliva and is playing a crucial role in virus transmission, especially from individuals showing absolutely no symptoms. Saliva is proving to be a promising noninvasive sample specimen for the diagnosis of COVID-19, thus helping to monitor the infection and prevent it from further spreading by prompt isolation.


Sign in / Sign up

Export Citation Format

Share Document