Effect of rhPDGF-BB-Coated Sutures on Tendon Healing in a Rat Model: A Histological and Biomechanical Study

Author(s):  
S. Cummings ◽  
J. Dines ◽  
C. K. Hee ◽  
H. K. Kestler ◽  
C. M. Roden ◽  
...  

Delivering growth factors to the site of injury using a coated suture delivery method has been investigated recently as a means to augment tissue repair [1]. This is a practical approach for growth factor delivery, as sutures are the method of choice for most orthopaedic surgeons for soft tissue repairs. One advantage of growth factor-coated sutures in tendon repair is the potential to accelerate healing in vivo, thereby improving the outcome of the repair. In particular, platelet-derived growth factor-BB (PDGF-BB) is a well characterized wound healing protein known to be chemotactic and mitogenic for cells of mesenchymal origin, including tenocytes, and has been shown to improve healing when applied to animal models of tendon injury [2,3]. The aim of this study was to compare the quality of the tendon repair at four weeks post treatment with sutures coated with varying concentrations of rhPDGF-BB, relative to buffer-coated suture repairs.

2007 ◽  
Vol 292 (1) ◽  
pp. R321-R327 ◽  
Author(s):  
David Marsolais ◽  
Claude H. Côté ◽  
Jérôme Frenette

Transcription factor p53, which was initially associated with cancer, has now emerged as an important regulator of inflammation and extracellular matrix homeostasis, two processes highly relevant to tendon repair. The goal of this study was to evaluate the effect of a p53 transactivation inhibitor, namely, pifithrin-α, on the pathophysiological sequence following collagenase-induced tendon injury. Administration of pifithrin-α during the inflammatory phase reduced the accumulation of neutrophils and macrophages by 30 and 40%, respectively, on day 3 postinjury. Pifithrin-α failed to reduce the percentage of apoptotic cells following collagenase injection but delayed functional recovery. In uninjured Achilles tendons, pifithrin-α increased metalloprotease activity 2.4-fold. Accordingly, pifithrin-α reduced the collagen content in intact tendons as well as in injured tendons 7 days posttrauma compared with placebo. The effect of pifithrin-α on load to failure and stiffness was also evaluated. The administration of pifithrin-α during the inflammatory phase did not significantly decrease the functional deficit 3 days posttrauma. More importantly, load to failure and stiffness were significantly decreased in the pifithrin-α group from day 7 to day 28 compared with placebo. Overall, our results suggest that administration of pifithrin-α alters the inflammatory process and delays tendon healing. The present findings also support the concept that p53 can regulate extracellular matrix homeostasis in vivo.


2006 ◽  
Vol 31 (5) ◽  
pp. 524-529 ◽  
Author(s):  
B. W. SU ◽  
F. J. RAIA ◽  
H. M. QUITKIN ◽  
M. PARISIEN ◽  
R. J. STRAUCH ◽  
...  

The purpose of this study was to examine the in vivo characteristics of the stainless-steel Teno Fix™ device used for flexor tendon repair. The common flexor digitorum superficialis tendon was transected in 16 dogs and repaired with the device. The animals were euthanized at 3, 6, or 12 weeks postoperatively. Difficulties with cast immobilization led nine of 16 animals to be full weight bearing too early, leading to rupture of their repairs. The seven tendons with successful primary repairs (gap <2 mm) underwent histological examination. This in vivo study demonstrates that use of the Teno Fix™ in “suture” of dog flexor tendons did not lead to scarring at the tendon surface, does not cause an inflammatory reaction within the tendon and does not interfere with tendon healing.


2020 ◽  
Author(s):  
Guanyin Chen ◽  
wangqian zhang ◽  
Jintao Gu ◽  
Yuan Gao ◽  
Lei He ◽  
...  

Abstract Background: Tendon injury is a common but tough medical problem. Unsatisfactory clinical results have been reported in tendon repair using mesenchymal stem cells (MSCs) therapy, creating a need for a better strategy to induce MSCs to tenogenic differentiation. This study was designed to investigate the role of hypoxia in the tenogenic differentiation of MSCs in vitro and in vivo and to compare the tenogenic differentiation capacities of different MSCs under hypoxia condition in vitro. Methods: Adipose tissue-derived MSCs (AMSCs) and bone marrow-derived MSCs (BMSCs) were isolated and characterized by the expression of MSC-specific markers and tri-lineage differentiation. The expression of hypoxia induced factor-1 alpha (Hif-1α) and the proliferation of AMSCs and BMSCs were examined in order to confirm the establishment of hypoxia condition. qRT-PCR, western blot, and immunofluorescence staining were used to evaluate the expression of tendon-associated marker Col-1a1, Col-3a1, Dcn, and Tnmd in AMSCs and BMSCs under hypoxia and/or Tgf-β1 condition. In vivo, a patellar tendon injury model was established. Normoxic and hypoxic BMSCs were cultured and implanted. Histological, biomechanical and transmission electron microscopy analyses were performed to assess the improved healing effect of hypoxic BMSCs on tendon injury. Results: Hypoxia remarkably increased the expression of Hif-1α and the proliferation of AMSCs and BMSCs. Our in vitro results detected that hypoxia not only promoted a significant increase in tenogenic markers in both AMSCs and BMSCs compared with the normoxia group, but also showed higher inductility compared with Tgf-β1. In addition, hypoxic BMSCs exhibited higher potential of tenogenic differentiation than hypoxic AMSCs. Our in vivo results demonstrated that hypoxic BMSCs possessed better histological and biomechanical properties than those of normoxic BMSCs, as evidenced by histological scores, quantitative analysis of immunohistochemical staining for Col-1a1 and Tnmd, the range and average of collagen fibril diameters and patellar tendon biomechanical tests. Conclusions: These findings suggested that hypoxia may be a practical and reliable strategy to induce tenogenic differentiation of BMSCs for tendon repair and could enhance the effectiveness of MSCs therapy in treating tendon injury.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Amritha Vijayan ◽  
Sabareeswaran A. ◽  
G. S. Vinod Kumar

AbstractApplication of growth factors at wound site has improved the efficiency and quality of healing. Basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) induce proliferation of various cells in wound healing. Delivery of growth factor from controlled release systems protect it from degradation and also result in sustained delivery of it at the site of injury. The goal of the study was to develop a Polyethylene glycol (PEG) cross-linked cotton-like chitosan scaffold (CS-PEG-H) by freeze-drying method and chemically conjugate heparin to the scaffold to which the growth factors can be electrostatically bound and evaluate its wound healing properties in vitro and in vivo. The growth factor containing scaffolds induced increased proliferation of HaCaT cells, increased neovascularization and collagen formation seen by H and E and Masson’s trichrome staining. Immunohistochemistry was performed using the Ki67 marker which increased proliferation of cells in growth factor containing scaffold treated group. Frequent dressing changes are a major deterrent to proper wound healing. Our system was found to release both VEGF and bFGF in a continuous manner and attained stability after 7 days. Thus our system can maintain therapeutic levels of growth factor at the wound bed thereby avoiding the need for daily applications and frequent dressing changes. Thus, it can be a promising candidate for wound healing.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Guanyin Chen ◽  
Wangqian Zhang ◽  
Kuo Zhang ◽  
Shuning Wang ◽  
Yuan Gao ◽  
...  

Tendon injury is a common but tough medical problem. Unsatisfactory clinical results have been reported in tendon repair using mesenchymal stem cell (MSC) therapy, creating a need for a better strategy to induce MSCs to tenogenic differentiation. This study was designed to examine the effect of hypoxia on the tenogenic differentiation of different MSCs and their tenogenic differentiation capacities under hypoxia condition in vitro and to investigate the in vivo inductility of hypoxia in tenogenesis. Adipose tissue-derived MSCs (AMSCs) and bone marrow-derived MSCs (BMSCs) were isolated and characterized. The expression of hypoxia-induced factor-1 alpha (Hif-1α) was examined to confirm the establishment of hypoxia condition. qRT-PCR, western blot, and immunofluorescence staining were used to evaluate the expression of tendon-associated marker Col-1a1, Col-3a1, Dcn, and Tnmd in AMSCs and BMSCs under hypoxia condition, compared with Tgf-β1 induction. In vivo, a patellar tendon injury model was established. Normoxic and hypoxic BMSCs were cultured and implanted. Histological, biomechanical, and transmission electron microscopy analyses were performed to assess the improved healing effect of hypoxic BMSCs on tendon injury. Our in vitro results showed that hypoxia remarkably increased the expression of Hif-1α and that hypoxia not only promoted a significant increase in tenogenic markers in both AMSCs and BMSCs compared with the normoxia group but also showed higher inductility compared with Tgf-β1. In addition, hypoxic BMSCs exhibited higher potential of tenogenic differentiation than hypoxic AMSCs. Our in vivo results demonstrated that hypoxic BMSCs possessed better histological and biomechanical properties than normoxic BMSCs, as evidenced by histological scores, patellar tendon biomechanical parameters, and the range and average of collagen fibril diameters. These findings suggested that hypoxia may be a practical and reliable strategy to induce tenogenic differentiation of BMSCs for tendon repair and could enhance the effectiveness of MSCs therapy in treating tendon injury.


2018 ◽  
Vol 23 (04) ◽  
pp. 463-468
Author(s):  
Rohit Singh ◽  
Jihad Alzyoud ◽  
Ryan Trickett ◽  
Peter Thomas ◽  
Peter Theobald ◽  
...  

Background: Flexor tendon injuries are extremely common and they are usually the result of incised traumatic glass or knife injury. The process of tendon healing is a complicated and exceptionally-regimented mechanism that is originated and monitored by a vast number of diverse molecules. One of the most pivotal groups of mediators that are crucial to the healing process are growth factors (GF). Intense pulse light (IPL) can lead to evidence of new collagen formation with associated clinical improvement in tissue healing. The biological benefit of Intense pulse light (IPL) relies on judicious photothermolysis, where heat driven radiation is dissipated and focused at the cellular level. The aims of this study is to set out the effect of growth factor and IPL on healing following a tendon repair. Methods: Bovine common digital extensor tendons (CDET) were used as an ex vivo model. 44 tendon repairs were performed by the lead author using 2.5 × magnification loupes and standard instruments. Clamped tendons were assigned into the following groups; control, IPL, GF, IPL and GF. After culturing, biomechanical testing was carried out using monotonic tensile testing with displacement-controlled uniaxial tension to failure. Results: The mean values for ultimate tensile stress (UTS) for the control group was 53.51 N, for IPL it was 51.15 N, for growth factor was 70.10 N and for combined growth factor and IPL it was 75.16 N. Conclusions: This study showed significant improvement in UTS when repaired tendons were cultured with growth factor compared to control and IPL. This would suggest a biomechanical advantage for tendon healing.


Biomaterials ◽  
2014 ◽  
Vol 35 (31) ◽  
pp. 8829-8839 ◽  
Author(s):  
Steven Lu ◽  
Johnny Lam ◽  
Jordan E. Trachtenberg ◽  
Esther J. Lee ◽  
Hajar Seyednejad ◽  
...  

Zygote ◽  
2011 ◽  
Vol 20 (2) ◽  
pp. 97-102 ◽  
Author(s):  
Alexander V. Makarevich ◽  
Elena Kubovičová ◽  
Zdena Hegedušová ◽  
Juraj Pivko ◽  
František Louda

SummaryThe goal of this study was to examine the effect of insulin-like growth factor I (IGF-I; added during post-thaw culture (48 h)) on the preimplantation viability and quality of cryopreserved bovine in vivo recovered embryos. The morula stage embryos, non-surgically recovered from superovulated dairy cows of Czech Fleckvieh cattle breed, had previously been cryopreserved by a slow freezing technique and stored in liquid nitrogen since 1989–1990. Following thawing, the embryos were cultured for 48 h either alone (no IGF-I) or in the presence of IGF-I (10 or 100 ng/ml); non-cultured embryos served as a control. Thereafter, the embryos were analyzed for cleavage to the blastocyst stage, apoptosis (TUNEL), embryo cell number and quality of actin cytoskeleton. Following post-thaw culture 41% of embryos developed to advanced blastocysts. IGF-I increased this per cent and, at a higher dose, essentially reduced the per cent of degenerated embryos. In cultured embryos, IGF-I at both doses elevated the cell number compared with non-cultured embryos. However, in comparison with embryos cultured without IGF-I, only the higher IGF-I dose resulted in elevating the embryo cell number. The TUNEL index was significantly lowered by IGF-I treatment. Thawed embryos were mostly of the grade III actin type and fewer (12%) had grade II actin, whilst no grade I actin embryos were noted. The addition of IGF-I resulted in the appearance of grade I actin embryos (8.33 and 6.9% for 10 and 100 ng/ml, respectively). These observations indicate that the addition of IGF-I during post-thaw culture can improve the quality of bovine cryopreserved embryos.


Sign in / Sign up

Export Citation Format

Share Document