Observation of the Poling Process in Ferroelectric Ceramics Using Piezoresponse Force Microscopy

Author(s):  
K. L. Kim ◽  
J. E. Huber

Evolution of the domain structure in bulk polycrystalline PZT during poling was studied using Piezoresponse Force Microscopy (PFM). For the study, two different experimental methods were employed. First, a trapezoidal PZT specimen was subjected to electric field so as to produce a wide variation of electric field intensity in the specimen. PFM images were then acquired from several different areas that have experienced different field strengths. Histograms of pixel intensity show a distinct difference in the pattern of piezoresponse signal between poled and unpoled areas. The presence of non-180° domain structure in the scanned area significantly affects the histogram pattern. At high levels of electric field the presence of mainly 180° domain structures leads to a bi-modal M-shaped histogram. To illustrate the evolution of the non-180° domain structure, in-plane poling was conducted with the electric field level increased in steps, and the domain evolution process was observed by PFM after each step. The resulting images demonstrate that non-180° domain structures gradually disappear from the specimen surface during the poling process. The PFM data can be exploited to study domain evolution in bulk ferroelectric materials via both qualitative observation and statistical analysis.

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 855
Author(s):  
Hongli Wang ◽  
Kaiyang Zeng

The evolution of the domain structures of [001]-oriented relaxor ferroelectric 0.93PbZn1/3Nb2/3O3-0.07PbTiO3 (PZN-7%PT) single crystals as a function of temperature was investigated in situ by using piezoresponse force microscopy (PFM). It was found that the local domain structure of PZN-7%PT single crystals at room temperature is rhombohedral with nanoscale twins. Temperature-dependent domain structures showed that the phase transition process is a collective process and that the sample underwent a sequence of rhombohedral (R) → monoclinic (Mc) → tetragonal (T) → cubic (C) phase transformations when the temperature increased from 25 °C to 170 °C. The results provide direct observation of the phase transition evolution of PZN-7%PT single crystals as a function of temperature, which is of great significance to fully understand the relationships between the domain structure and phase structure of PZN-7%PT single crystals.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3707
Author(s):  
Artur Udalov ◽  
Denis Alikin ◽  
Andrei Kholkin

The analytical solution for the displacements of an anisotropic piezoelectric material in the uniform electric field is presented for practical use in the “global excitation mode” of piezoresponse force microscopy. The solution is given in the Wolfram Mathematica interactive program code, allowing the derivation of the expression of the piezoresponse both in cases of the anisotropic and isotropic elastic properties. The piezoresponse’s angular dependencies are analyzed using model lithium niobate and barium titanate single crystals as examples. The validity of the isotropic approximation is verified in comparison to the fully anisotropic solution. The approach developed in the paper is important for the quantitative measurements of the piezoelectric response in nanomaterials as well as for the development of novel piezoelectric materials for the sensors/actuators applications.


2019 ◽  
Vol 9 (3) ◽  
pp. 344-352 ◽  
Author(s):  
L.I. Stefanovich ◽  
O.Y. Mazur ◽  
V.V. Sobolev

Introduction: Within the framework of the phenomenological theory of phase transitions of the second kind of Ginzburg-Landau, the kinetics of ordering of a rapidly quenched highly nonequilibrium domain structure is considered using the lithium tantalate and lithium niobate crystals as an example. Experimental: Using the statistical approach, evolution equations describing the formation of the domain structure under the influence of a high-frequency alternating electric field in the form of a standing wave were obtained. Numerical analysis has shown the possibility of forming thermodynamically stable mono- and polydomain structures. It turned out that the process of relaxation of the system to the state of thermodynamic equilibrium can proceed directly or with the formation of intermediate quasi-stationary polydomain asymmetric phases. Results: It is shown that the formation of Regular Domain Structures (RDS) is of a threshold character and occurs under the influence of an alternating electric field with an amplitude less than the critical value, whose value depends on the field frequency. The conditions for the formation of RDSs with a micrometer spatial scale were determined. Conclusion: As shown by numerical studies, the RDSs obtained retain their stability, i.e. do not disappear even after turning off the external electric field. Qualitative analysis using lithium niobate crystals as an example has shown the possibility of RDSs formation in high-frequency fields with small amplitude under resonance conditions


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Munusamy Kuppan ◽  
Daichi Yamamoto ◽  
Genta Egawa ◽  
Sivaperuman Kalainathan ◽  
Satoru Yoshimura

Abstract(Bi1−xLax)(Fe,Co)O3 multiferroic magnetic film were fabricated using pulsed DC (direct current) sputtering technique and demonstrated magnetization reversal by applied electric field. The fabricated (Bi0.41La0.59)(Fe0.75Co0.25)O3 films exhibited hysteresis curves of both ferromagnetic and ferroelectric behavior. The saturated magnetization (Ms) of the multiferroic film was about 70 emu/cm3. The squareness (S) (= remanent magnetization (Mr)/Ms) and coercivity (Hc) of perpendicular to film plane are 0.64 and 4.2 kOe which are larger compared with films in parallel to film plane of 0.5 and 2.5 kOe. The electric and magnetic domain structures of the (Bi0.41La0.59)(Fe0.75Co0.25)O3 film analyzed by electric force microscopy (EFM) and magnetic force microscopy (MFM) were clearly induced with submicron scale by applying a local electric field. This magnetization reversal indicates the future realization of high performance magnetic device with low power consumption.


2021 ◽  
Author(s):  
Jing Wang ◽  
Jing Ma ◽  
Houbing Huang ◽  
Ji Ma ◽  
Hasnain Jafri ◽  
...  

Abstract The electronic conductivities of ferroelectric domain walls have been extensively explored over the past decade for potential nanoelectronic applications. However, the realization of logic devices based on ferroelectric domain walls requires reliable and flexible control of the domain-wall configuration and conduction path. Here, we demonstrate electric-field-controlled stable and repeatable on-and-off switching of conductive domain walls within topologically confined vertex domains naturally formed in self-assembled ferroelectric nano-islands. Using a combination of piezoresponse force microscopy, conductive atomic force microscopy, and phase-field simulations, we show that on-off switching is accomplished through reversible transformations between charged and neutral domain walls via electric-field-controlled domain-wall reconfiguration. By analogy to logic processing, we propose programmable logic gates (such as NOT, OR, AND and their derivatives) and logic circuits (such as fan-out) based on reconfigurable conductive domain walls. Our work provides a potentially viable platform for programmable all-electric logic based on a ferroelectric domain-wall network with low energy consumption.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Yoshihiro Kuroiwa ◽  
Sangwook Kim ◽  
Ichiro Fujii ◽  
Shintaro Ueno ◽  
Yuki Nakahira ◽  
...  

Abstract A large piezoelectric response in ferroelectric ceramics is typically associated with extrinsic contributions from ferroelectric domain structures. However, such domain structures cannot be expected in systems with pseudo-cubic symmetry. In this study, we determine the mechanism of significant piezoelectricity and ferroelectricity in 0.3BaTiO3–0.1Bi(Mg1/2Ti1/2)O3–0.6BiFeO3 ceramic with a perovskite-type pseudo-cubic symmetry. Synchrotron radiation X-ray diffraction reveals that the Bi ions in this ceramic essentially prefer to be off-centered at six sites by approximately 0.4 Å, in the cubic <100> directions. A phase transition occurs at TC ~725 K. However, the crystal seems to present a cubic symmetry even at room temperature. The large piezoelectric response is caused by the combinational partial ordering of the off-centered Bi ions, adapted to any direction of the applied electric field to the ceramic grains. The proposed mechanism for the emergence of a high polarization in the above system will enable designing novel Pb-free ceramics by controlling the fluctuated and off-centered ions under an applied electric field.


Sign in / Sign up

Export Citation Format

Share Document