scholarly journals Smart Nanocarriers and Drug Delivery: Soft Interaction and Colloidal Stability in Complex Biological Media

Author(s):  
Domenico Lombardo
2018 ◽  
Vol 83 ◽  
pp. 38-45 ◽  
Author(s):  
Carlo Bradac ◽  
Ishan Das Rastogi ◽  
Nicole M. Cordina ◽  
Alfonso Garcia-Bennett ◽  
Louise J. Brown

2018 ◽  
Vol 5 (1) ◽  
pp. 1 ◽  
Author(s):  
Jessica Oliveira ◽  
Raquel Rodrigues ◽  
Lillian Barros ◽  
Isabel Ferreira ◽  
Luís Marchesi ◽  
...  

In this study, hydrophilic magnetic nanoparticles were synthesized by green routes using a methanolic extract of Rubus ulmifolius Schott flowers. The prepared magnetic nanoparticles were coated with carbon-based shell for drug delivery application. The nanocomposites were further chemically functionalized with nitric acid and, sequentially, with Pluronic® F68 (CMNPs-plur) to enhance their colloidal stability. The resulting material was dispersed in phosphate buffer solution at pH 7.4 to study the Doxorubicin loading. After shaking for 48 h, 99.13% of the drug was loaded by the nanocomposites. Subsequently, the drug release was studied in different working phosphate buffer solutions (i.e., PB pH 4.5, pH 6.0 and pH 7.4) to determine the efficiency of the synthesized material for drug delivery as pH-dependent drug nanocarrier. The results have shown a drug release quantity 18% higher in mimicking tumor environment than in the physiological one. Therefore, this study demonstrates the ability of CMNPs-plur to release a drug with pH dependence, which could be used in the future for the treatment of cancer "in situ" by means of controlled drug release.


Nanomedicine ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 219-234 ◽  
Author(s):  
Isabel Ortiz de Solorzano ◽  
Martin Prieto ◽  
Gracia Mendoza ◽  
Victor Sebastian ◽  
Manuel Arruebo

Aim: Developing hybrid poly(N-isopropylacrylamide)-based nanogels decorated with plasmonic hollow gold nanoparticles for on-demand drug delivery and their physico-chemical characterization, bupivacaine loading and release ability upon light irradiation, and in vitro cell viability. Materials & methods: Hollow gold nanoparticles were prepared by galvanic replacement reaction; poly(N-isopropylacrylamide)-based nanogels were synthesized via precipitation polymerization and their electrostatic coupling was accomplished using poly(allylamine hydrochloride) as cationic polyelectrolyte linker. Results & conclusion: Colloidal stability of the resulted hybrid nanovectors was demonstrated under physiological conditions together with their fast response and excellent heating efficiency after light stimulation, indicating their potential use as triggered drug-delivery vectors. Moreover, their influence on cell metabolism and cell cycle under subcytotoxic doses were studied showing excellent cytocompatibility.


2018 ◽  
Vol 25 (35) ◽  
pp. 4553-4586 ◽  
Author(s):  
Jonas Schubert ◽  
Munish Chanana

Within the last two decades, the field of nanomedicine has not developed as successfully as has widely been hoped for. The main reason for this is the immense complexity of the biological systems, including the physico-chemical properties of the biological fluids as well as the biochemistry and the physiology of living systems. The nanoparticles’ physicochemical properties are also highly important. These differ profoundly from those of freshly synthesized particles when applied in biological/living systems as recent research in this field reveals. The physico-chemical properties of nanoparticles are predefined by their structural and functional design (core and coating material) and are highly affected by their interaction with the environment (temperature, pH, salt, proteins, cells). Since the coating material is the first part of the particle to come in contact with the environment, it does not only provide biocompatibility, but also defines the behavior (e.g. colloidal stability) and the fate (degradation, excretion, accumulation) of nanoparticles in the living systems. Hence, the coating matters, particularly for a nanoparticle system for biomedical applications, which has to fulfill its task in the complex environment of biological fluids, cells and organisms. In this review, we evaluate the performance of different coating materials for nanoparticles concerning their ability to provide colloidal stability in biological media and living systems.


Langmuir ◽  
2020 ◽  
Vol 36 (39) ◽  
pp. 11442-11449 ◽  
Author(s):  
Andressa da Cruz Schneid ◽  
Camila Pedroso Silveira ◽  
Flávia Elisa Galdino ◽  
Larissa Fernanda Ferreira ◽  
Karim Bouchmella ◽  
...  

2016 ◽  
Vol 18 (8) ◽  
Author(s):  
Simona Argentiere ◽  
Claudia Cella ◽  
Maura Cesaria ◽  
Paolo Milani ◽  
Cristina Lenardi

Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 540 ◽  
Author(s):  
Črt Dragar ◽  
Tanja Potrč ◽  
Sebastjan Nemec ◽  
Robert Roškar ◽  
Stane Pajk ◽  
...  

The development of various magnetically-responsive nanostructures is of great importance in biomedicine. The controlled assembly of many small superparamagnetic nanocrystals into large multi-core clusters is needed for effective magnetic drug delivery. Here, we present a novel one-pot method for the preparation of multi-core clusters for drug delivery (i.e., magnetic nanocarriers). The method is based on hot homogenization of a hydrophobic phase containing a nonpolar surfactant into an aqueous phase, using ultrasonication. The solvent-free hydrophobic phase that contained tetradecan-1-ol, γ-Fe2O3 nanocrystals, orlistat, and surfactant was dispersed into a warm aqueous surfactant solution, with the formation of small droplets. Then, a pre-cooled aqueous phase was added for rapid cooling and the formation of solid magnetic nanocarriers. Two different nonpolar surfactants, polyethylene glycol dodecyl ether (B4) and our own N1,N1-dimethyl-N2-(tricosan-12-yl)ethane-1,2-diamine (SP11), were investigated for the preparation of MC-B4 and MC-SP11 magnetic nanocarriers, respectively. The nanocarriers formed were of spherical shape, with mean hydrodynamic sizes <160 nm, good colloidal stability, and high drug loading (7.65 wt.%). The MC-B4 nanocarriers showed prolonged drug release, while no drug release was seen for the MC-SP11 nanocarriers over the same time frame. Thus, the selection of a nonpolar surfactant for preparation of magnetic nanocarriers is crucial to enable drug release from nanocarrier.


2013 ◽  
Vol 25 (10) ◽  
pp. 2035-2044 ◽  
Author(s):  
Jothirmayanantham Pichaandi ◽  
Keith A. Abel ◽  
Noah J. J. Johnson ◽  
Frank C. J. M. van Veggel

2014 ◽  
Vol 10 (7) ◽  
pp. 2965-2975 ◽  
Author(s):  
George R. Dakwar ◽  
Elisa Zagato ◽  
Joris Delanghe ◽  
Sabrina Hobel ◽  
Achim Aigner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document