Deposition of various metal, ceramic, and cermet coatings by an industrial-scale large area filtered arc deposition process

2009 ◽  
Vol 27 (4) ◽  
pp. 1080-1095 ◽  
Author(s):  
V. Gorokhovsky ◽  
C. Bowman ◽  
D. VanVorous ◽  
J. Wallace
Author(s):  
Vladimir Gorokhovsky ◽  
Chris Bowman ◽  
John Wallace ◽  
Dave VanVorous ◽  
John O’Keefe ◽  
...  

To mitigate costly surface damage, compressor blades are coated with materials that resist corrosion and resist wear from particle impact. Large Area Filtered Arc Deposition (LAFAD) technology has demonstrated the capability of depositing relatively thick cermet coatings with microlaminated architectures forming a stack of metallic/ceramic bi-layers. These coatings have nearly defect-free morphology and an extremely smooth surface with high surface energy, which improves the aerodynamics of airfoils. Yet, the deposition process can be carried out at a speed that produces coatings sufficiently thick to provide long life protection from particle damage at a cost-effective production rate. The basic mechanical properties and erosion resistance of LAFAD microlaminated cermet coatings deposited on Ti6Al4V and 17-4PH steel substrates have been investigated as a function of coating composition and architecture.


2016 ◽  
Vol 34 (1) ◽  
pp. 137-141 ◽  
Author(s):  
Krzysztof Zdunek ◽  
Lukasz Skowroński ◽  
Rafal Chodun ◽  
Katarzyna Nowakowska-Langier ◽  
Andrzej Grabowski ◽  
...  

AbstractThe aim of the present paper has been to verify the effectiveness and usefulness of a novel deposition process named GIMS (Gas Injection Magnetron Sputtering) used for the flrst time for deposition of Ti/TiO₂ coatings on large area glass Substrates covered in the condition of industrial scale production. The Ti/TiO₂ coatings were deposited in an industrial System utilizing a set of linear magnetrons with the length of 2400 mm each for covering the 2000 × 3000 mm glasses. Taking into account the speciflc course of the GIMS (multipoint gas injection along the magnetron length) and the scale of the industrial facility, the optical coating uniformity was the most important goal to check. The experiments on Ti/TiO₂ coatings deposited by the use of GIMS were conducted on Substrates in the form of glass plates located at the key points along the magnetrons and intentionally non-heated during any stage of the process. Measurements of the coatings properties showed that the thickness and optical uniformity of the 150 nm thick coatings deposited by GIMS in the industrial facility (the thickness differences on the large plates with 2000 mm width did not exceed 20 nm) is fully acceptable form the point of view of expected applications e.g. for architectural glazing.


2020 ◽  
Vol 90 (3) ◽  
pp. 30502
Author(s):  
Alessandro Fantoni ◽  
João Costa ◽  
Paulo Lourenço ◽  
Manuela Vieira

Amorphous silicon PECVD photonic integrated devices are promising candidates for low cost sensing applications. This manuscript reports a simulation analysis about the impact on the overall efficiency caused by the lithography imperfections in the deposition process. The tolerance to the fabrication defects of a photonic sensor based on surface plasmonic resonance is analysed. The simulations are performed with FDTD and BPM algorithms. The device is a plasmonic interferometer composed by an a-Si:H waveguide covered by a thin gold layer. The sensing analysis is performed by equally splitting the input light into two arms, allowing the sensor to be calibrated by its reference arm. Two different 1 × 2 power splitter configurations are presented: a directional coupler and a multimode interference splitter. The waveguide sidewall roughness is considered as the major negative effect caused by deposition imperfections. The simulation results show that plasmonic effects can be excited in the interferometric waveguide structure, allowing a sensing device with enough sensitivity to support the functioning of a bio sensor for high throughput screening. In addition, the good tolerance to the waveguide wall roughness, points out the PECVD deposition technique as reliable method for the overall sensor system to be produced in a low-cost system. The large area deposition of photonics structures, allowed by the PECVD method, can be explored to design a multiplexed system for analysis of multiple biomarkers to further increase the tolerance to fabrication defects.


ACS Nano ◽  
2021 ◽  
Author(s):  
Ji Hoon Kim ◽  
Gyeong Seok Park ◽  
Yong-Jae Kim ◽  
Eunji Choi ◽  
Junhyeok Kang ◽  
...  

2013 ◽  
Vol 1538 ◽  
pp. 275-280
Author(s):  
S.L. Rugen-Hankey ◽  
V. Barrioz ◽  
A. J. Clayton ◽  
G. Kartopu ◽  
S.J.C. Irvine ◽  
...  

ABSTRACTThin film deposition process and integrated scribing technologies are key to forming large area Cadmium Telluride (CdTe) modules. In this paper, baseline Cd1-xZnxS/CdTe solar cells were deposited by atmospheric-pressure metal organic chemical vapor deposition (AP-MOCVD) onto commercially available ITO coated boro-aluminosilicate glass substrates. Thermally evaporated gold contacts were compared with a screen printed stack of carbon/silver back contacts in order to move towards large area modules. P2 laser scribing parameters have been reported along with a comparison of mechanical and laser scribing process for the scribe lines, using a UV Nd:YAG laser at 355 nm and 532 nm fiber laser.


2019 ◽  
Author(s):  
Sasan V. Grayli ◽  
Xin Zhang ◽  
Dmitry Star ◽  
Gary Leach

Size, shape and crystallinity play a critical role in the wavelength-dependent optical responses and plasmonic local near-field distributions of metallic nanostructures. While their enhanced local fields can drive new and useful chemical and physical processes, the ability to fabricate shape-controlled single-crystal metal nanostructures and position them precisely on substrates for device applications represents a significant barrier to harnessing their greater potential. Here, we describe a novel electroless deposition process in the presence of anionic additives that yields additive-specific, shape-controlled, single-crystal plasmonic Au nanostructures on Ag(100) and Au(100) substrates. Deposition of Au in the presence of SO<sub>4</sub><sup>2-</sup> ions results in the formation of smooth Au(111)-faceted square pyramids that show large surface enhanced Raman responses. The use of halide additives such as Cl<sup>-</sup> and Br<sup>- </sup>that interact strongly with (100) facets produces highly textured hillock-type structures characterized by edge and screw-type dislocations (Cl<sup>-</sup>), or flat platelet-like features characterized by large area Au(100) terraces with (110) step edges (Br<sup>-</sup>). Use of additive combinations provides structures that comprise characteristics derived from each additive including new square pyramidal structures with dominant Au(110) facets (SO<sub>4</sub><sup>2-</sup>and Br<sup>-</sup>). Finally we demonstrate that this bottom-up electroless deposition process, when combined with top-down lithographic patterning methods, can be used to position shape-controlled, single-crystal Au nanostructures with precise location and orientation on surfaces. We anticipate that this approach will be employed as a powerful new tool to tune the plasmonic characteristics of nanostructures and facilitate their broader integration into device applications.


Sign in / Sign up

Export Citation Format

Share Document