Fault analysis and treatment of stator cooling water pump in a power plant

2021 ◽  
Author(s):  
Shuai Chen ◽  
Yu Sun
Author(s):  
Juni Eko Hartanto ◽  
Mastiadi Tamjidillah

Electric power is used to support daily life, therefore electrical energy must be continually developed considering the increasing need for this energy. Therefore it is necessary to do preventive, corrective maintenance and efforts to optimize the generating unit such as savings in the production process, one of which is by analyzing the operation of a Circulating Water Pump CWP at the Unit 4 Acid-Acid Power Plant. The formulation of the problem in this study is that in the manufacturer's design for 65 MW full load 2 CWP pumps are needed, this can be seen from the pump specification data, but in fact with only a Circulating Water Pump CWP can produce a full load of 65 MW.


2019 ◽  
Vol 23 (1) ◽  
pp. 70-75 ◽  
Author(s):  
Caneon Kurien ◽  
Ajay Kumar Srivastava

Abstract A case study was carried out to investigate the effectiveness of condition monitoring techniques in the early failure detection of pumps in a thermal power plant. Various condition monitoring techniques used in this case study involved vibration analysis, motor current signature analysis, noise monitoring and wear debris analysis. These techniques were applied on the three pumps, namely boiler feed water pump, auxiliary cooling water pump and condensate extraction pump, which have to work continuously for the operation of the thermal power plant. Vibration analysis of the auxiliary cooling water pump showed that there is a rising trend in the acceleration values at its driving and non-driving end indicating the deterioration of bearings. Motor current index range of all the pumps was found to be within acceptable limits. Wear debris analysis of lubricant in the hydraulic coupling of boiler feed water pump indicated the presence of sand, dirt and low alloy steel sliding wear particles in it. Condition monitoring techniques have been proved to be an effective technique in early failure detection of pumps.


Author(s):  
Akili D. Khawaji ◽  
Jong-Mihn Wie

The most popular method of controlling sulfur dioxide (SO2) emissions in a steam turbine power plant is a flue gas desulfurization (FGD) process that uses lime/limestone scrubbing. Another relatively newer FGD technology is to use seawater as a scrubbing medium to absorb SO2 by utilizing the alkalinity present in seawater. This seawater scrubbing FGD process is viable and attractive when a sufficient quantity of seawater is available as a spent cooling water within reasonable proximity to the FGD scrubber. In this process the SO2 gas in the flue gas is absorbed by seawater in an absorber and subsequently oxidized to sulfate by additional seawater. The benefits of the seawater FGD process over the lime/limestone process and other processes are; 1) The process does not require reagents for scrubbing as only seawater and air are needed, thereby reducing the plant operating cost significantly, and 2) No solid waste and sludge are generated, eliminating waste disposal, resulting in substantial cost savings and increasing plant operating reliability. This paper reviews the thermodynamic aspects of the SO2 and seawater system, basic process principles and chemistry, major unit operations consisting of absorption, oxidation and neutralization, plant operation and performance, cost estimates for a typical seawater FGD plant, and pertinent environmental issues and impacts. In addition, the paper presents the major design features of a seawater FGD scrubber for the 130 MW oil fired steam turbine power plant that is under construction in Madinat Yanbu Al-Sinaiyah, Saudi Arabia. The scrubber with the power plant designed for burning heavy fuel oil containing 4% sulfur by weight, is designed to reduce the SO2 level in flue gas to 425 ng/J from 1,957 ng/J.


2002 ◽  
Vol 2 ◽  
pp. 81-105 ◽  
Author(s):  
C.P. Ehrler ◽  
J.R. Steinbeck ◽  
E.A. Laman ◽  
J.B. Hedgepeth ◽  
J.R. Skalski ◽  
...  

A study to determine the effects of entrainment by the Diablo Canyon Power Plant (DCPP) was conducted between 1996 and 1999 as required under Section 316(b) of the Clean Water Act. The goal of this study was to present the U.S. Environmental Protection Agency (EPA) and Central Coast Regional Water Quality Control Board (CCRWQCB) with results that could be used to determine if any adverse environmental impacts (AEIs) were caused by the operation of the plant’s cooling-water intake structure (CWIS). To this end we chose, under guidance of the CCRWQCB and their entrainment technical working group, a unique approach combining three different models for estimating power plant effects: fecundity hindcasting (FH), adult equivalent loss (AEL), and the empirical transport model (ETM). Comparisons of the results from these three approaches provided us a relative measure of confidence in our estimates of effects. A total of 14 target larval fish taxa were assessed as part of the DCPP 316(b). Example results are presented here for the kelp, gopher, and black-and-yellow (KGB) rockfish complex and clinid kelpfish. Estimates of larval entrainment losses for KGB rockfish were in close agreement (FH is approximately equals to 550 adult females per year, AEL is approximately equals to 1,000 adults [male and female] per year, and ETM = larval mortality as high as 5% which could be interpreted as ca. 2,600 1 kg adult fish). The similar results from the three models provided confidence in the estimated effects for this group. Due to lack of life history information needed to parameterize the FH and AEL models, effects on clinid kelpfish could only be assessed using the ETM model. Results from this model plus ancillary information about local populations of adult kelpfish suggest that the CWIS might be causing an AEI in the vicinity of DCPP.


2011 ◽  
Vol 99-100 ◽  
pp. 350-353
Author(s):  
Xiao Bing Sun ◽  
Xu Bin Qiao

As the largest unit capacity of nuclear power plant at present, the flow conduit of circulating water pump in EPR1750 nuclear power plant is a volute conduit, which is a cast-in-situ conceret structure with complexly gradual change cavity. Therefore, the hydraulic efficiency of circulating water pump is not only related with the design of pump leaves, but also closely related to the design of volute and the complicated spatial type of intake and outtake conduits. With the pump leaves and the intake and outtake conduits of conceret volute as the research model, based on computational fluid dynamics (CFD)and the three dimensional Reynolds averaged Navier-Stokes equations, an analytic model suitable for computation is established to simulate the three-dimensional steady flow in the whole pumping system under different operating modes. By use of the commercial fluid-computation softer ANSYS, the distribution of basic physic quantities in the fluid field inside the pump and the conduits is obtained. The analysis and prediction of the performance of pump system are made, and the spatial type design of intake and outtake conduits is evaluated. The calculation results can be referenced to improve the design of pump systems in the similar projects.


2015 ◽  
Vol 812 ◽  
pp. 112-117
Author(s):  
K.M. Kumar ◽  
P. Venkateswaran ◽  
P. Suresh

The coolant (water) pump assumes an important role of cooling system in IC engines. With upgrading of the engine power by turbocharging and turbo inter cooling, the water pump capacity needs to be increased corresponding to the power. This capacity enhancement has to be achieved without calling for a major change in the existing water pump, envelop and related fitment details. This requires a clear understanding of centrifugal pump for its performance parameter. One such engine is upgraded by turbocharging from 195PS to 240PS @2200 rpm. Improving water pump flow by changing the impeller dimensions, impeller casing, increase the suction, delivery pipe diameter had been done. Validation of the water pump in its actual engine installation was taken up as a part of the research work. Flow rate comparison of the new pump with the existing pump was made and the results were analyzed. The new water pump gives better flow rates for the engine speeds up to1800 rpm, beyond which the flow rate is slightly lesser than the existing pump.


Sign in / Sign up

Export Citation Format

Share Document