Long-term room temperature stability of TlBr gamma detectors

Author(s):  
A. M. Conway ◽  
L. F. Voss ◽  
A. J. Nelson ◽  
P. R. Beck ◽  
R. T. Graff ◽  
...  
1977 ◽  
Vol 16 (01) ◽  
pp. 30-35 ◽  
Author(s):  
N. Agha ◽  
R. B. R. Persson

SummaryGelchromatography column scanning has been used to study the fractions of 99mTc-pertechnetate, 99mTcchelate and reduced hydrolyzed 99mTc in preparations of 99mTc-EDTA(Sn) and 99mTc-DTPA(Sn). The labelling yield of 99mTc-EDTA(Sn) chelate was as high as 90—95% when 100 μmol EDTA · H4 and 0.5 (Amol SnCl2 was incubated with 10 ml 99mTceluate for 30—60 min at room temperature. The study of the influence of the pH-value on the fraction of 99mTc-EDTA shows that pH 2.8—2.9 gave the best labelling yield. In a comparative study of the labelling kinetics of 99mTc-EDTA(Sn) and 99mTc- DTPA(Sn) at different temperatures (7, 22 and 37°C), no significant influence on the reduction step was found. The rate constant for complex formation, however, increased more rapidly with increased temperature for 99mTc-DTPA(Sn). At room temperature only a few minutes was required to achieve a high labelling yield with 99mTc-DTPA(Sn) whereas about 60 min was required for 99mTc-EDTA(Sn). Comparative biokinetic studies in rabbits showed that the maximum activity in kidneys is achieved after 12 min with 99mTc-EDTA(Sn) but already after 6 min with 99mTc-DTPA(Sn). The long-term disappearance of 99mTc-DTPA(Sn) from the kidneys is about five times faster than that for 99mTc-EDTA(Sn).


Solar Energy ◽  
2021 ◽  
Vol 218 ◽  
pp. 28-34
Author(s):  
Mahmoud Samadpour ◽  
Mahsa Heydari ◽  
Mahdi Mohammadi ◽  
Parisa Parand ◽  
Nima Taghavinia

2012 ◽  
Vol 531 ◽  
pp. 219-222
Author(s):  
Li Hua Shen ◽  
Ting Shang ◽  
Jun Zhou ◽  
Dong Wang ◽  
Yu Han ◽  
...  

Extremely small-sized superparamagnetic magnetite nanoparticles of 3Cit). The resulting Cit-coated magnetite nanoparticles exhibited long-term colloidal stability in aqueous media without any surface modification. Regarding the magnetic properties, the nanoparticles were superparamagnetic at room temperature, and might be the potential candidate for MRI contrast agents.


2021 ◽  
Author(s):  
◽  
Matt Cryer

<p>Colloidal semiconductor nanocrystals (NCs) with bandgaps less than 1 eV allow the development of mid wave infrared (MIR) sensitive detectors that exploit the benefits of colloidal materials, primarily bandgap selection and solution deposition. Additionally, the electrical behaviour of these films can be examined for characteristics that can increase the functionality of NC based detectors.  The production of devices that are designed to be competitive as ultra-low-cost, room temperature MIR detectors, operating with photonic, rather than thermal detection is detailed. The evolution of the colloidal synthesis, spray deposition methods, substrate materials and post deposition treatments used here lead to highly robust and high performing devices. These devices demonstrate a “colour” sensitivity down to 300 nm in the MIR (≈10 % of scale), with superior responsivities for this class of device, up to 0.9 AW⁻¹, and competitive specific detectivity up to 8 × 10⁹ Jones at 200 Hz and 300 K. Furthermore, these devices utilise a cheap and robust substrate material that allows operation after deformation up to 45 ° without degradation over many cycles. These devices offer a template for ultra-low-cost MIR detectors with performance that rivals microbolometers but with better measurement speed and spectral sensitivity. As such these devices showcase the key advantages of using colloidal NCs in MIR applications.  Planar and fully air processed thin film devices that demonstrate photo-induced memristive behaviour and can be used as a transistors, photode-tectors or memory devices are investigated. Following long term (60 h) air exposure, unpackaged NC films develop reliable memristive characteristics in tandem with temperature, gate and photoresponse. On/off ratios of more than 50 are achieved and the devices show long term stability, producing repeatable metrics over days of measurement. The on/off behaviour is shown to be dependent on previous charge flow and carrier density, implying memristive rather than switching behaviour. These observations are described within a long term trap filling model. This work represents an advance in the integration of NC films into electronic devices, which may lead to the development of multi-functional electronic components.  Building on the previous work the steps taken to move from a planar device, that works well in controlled conditions, to a multi-pixel sensor that can demonstrate MIR video imaging at room temperature in a noisy environment are shown. This is achieved with a 15 pixel detector that consists only of a polymer substrate and solution patterned NC pixels. This device can detect a 373 K object with the device at 298 K in a noisy environment. This performance is enabled by photogain at 5 V bias that reaches a maximum External Quantum Efficiency (EQE) of 1940 ± 290 % for a pixel with a 3.3 µm bandgap. Through the use of four separate bandgaps it is shown that “multicolour” thermal imaging systems can deliver another layer of information, on top of intensity, to the user. The behaviour of the system is examined under use and it is shown that the photoconductive device behaves as expected with regards to bias, and that trap enabled gain is sensitive to total incident flux, more than the spectral energy distribution of the target. Finally, it is shown that solution patterned QD fabrication methods can deliver electrical reproducibility between pixels that is sufficient to allow an imaging plane of multiple pixels.  The somewhat neglected tin chalcogenide semiconductor nanocrystals are investigated and inverse MIR detection at room temperature is demonstrated with planar, solution and airprocessed PbSnTe and SnTe QD devices. The detection mechanism is shown to be mediated by an interaction between MIR radiation and the vibrational stretches of adsorbed hydroxyl species at the oxdised NC surface. Devices are shown to possess mAW⁻¹ responsivity via a reduction in film conductance due to MIR radiation and, unlike classic MIR photoconductors, are unaffected by visible wavelengths. As such these devices offer the possibility of MIR thermal imaging that has an intrinsic solution to the blinding caused by higher energy light sources.  In summary, it is shown that semiconductor NCs with an all ambient fully solution processed deposition and ligand exchange procedure can be used to create simple, robust and cheap devices that are beginning to demonstrate metrics on par with current commercial thermal detector systems. It is also shown that these devices can under certain circumstances demonstrate novel behaviours that offer the prospects of enhanced or novel functionality.</p>


2008 ◽  
Vol 496 (1-2) ◽  
pp. 366-375 ◽  
Author(s):  
D. Picard ◽  
M. Fafard ◽  
G. Soucy ◽  
J.-F. Bilodeau

2006 ◽  
Vol 319 ◽  
pp. 151-156 ◽  
Author(s):  
Y. Hiki ◽  
M. Tanahashi ◽  
Shin Takeuchi

In a hydrogen-doped metallic glass, there appear low-temperature and high-temperature internal friction peaks respectively associated with a point-defect relaxation and the crystallization. The high-temperature-side slope of low-temperature peak and also the low-temperature-side slope of high-temperature peak enhance the background internal friction near the room temperature. A hydrogen-doped Mg-base metallic glass was proposed as a high-damping material to be used near and somewhat above the room temperature. Stability of the high damping was also checked.


2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Beatriz Quintero Moreno ◽  
María Araque ◽  
Evelyn Mendoza

Objective. To produce two supplemented agar types in order to store pneumococci for several months at room temperature.Methods. Todd-Hewitt/Hemoglobin/Yeast/Charcoal/Agar (TH-HYC) and Todd-Hewitt/Skim-Milk/Yeast/Charcoal/Agar (TH-SYC) were used to prepare two supplemented agar types. Nineteen pneumococci isolated from patients or asymptomatic carriers displaying diverse serotypes and multilocus sequence types (MLST) were subcultured and stored onto supplemented agar types, in four different tests, at room temperature.Findings. At the end of all tests (4–6 months) all noncontaminated subcultures were viable and maintained all phenotypic characteristics. Survival-time curves revealed a slow decrease of viable CFU over time on agar types, but at the end the number of viable CFU was satisfactory (≥2+ of growth). Decreasing of CFU was significantly higher for clinical versus nasopharyngeal isolates. Subcultures contamination rates were 6.25% and 14.58% after 2 and 6 months of storage, respectively.Conclusion. TH-HYC and TH-SYC agar types allowed the viability of pneumococci with several serotypes, MLST, and genetic profiles, after 6 months of storage at room temperature. We consider that these agar types are a valid alternative to preserve pneumococci over an extended period, especially when methods as cryopreservation or lyophilization are not available, and are useful for transporting strains between laboratories.


MRS Advances ◽  
2016 ◽  
Vol 1 (22) ◽  
pp. 1631-1636 ◽  
Author(s):  
Boya Cui ◽  
D. Bruce Buchholz ◽  
Li Zeng ◽  
Michael Bedzyk ◽  
Robert P. H. Chang ◽  
...  

ABSTRACTThe cross-plane thermal conductivities of InGaZnO (IGZO) thin films in different morphologies were measured on three occasions within 19 months, using the 3ω method at room temperature 300 K. Amorphous (a-), semi-crystalline (semi-c-) and crystalline (c-) IGZO films were grown by pulsed laser deposition (PLD), followed by X-ray diffraction (XRD) for evaluation of film quality and crystallinity. Semi-c-IGZO shows the highest thermal conductivity, even higher than the most ordered crystal-like phase. After being stored in dry low-oxygen environment for months, a drastic decrease of semi-c-IGZO thermal conductivity was observed, while the thermal conductivity slightly reduced in c-IGZO and remained unchanged in a-IGZO. This change in thermal conductivity with storage time can be attributed to film structural relaxation and vacancy diffusion to grain boundaries.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6692
Author(s):  
Xianhui Zhao ◽  
Haoyu Wang ◽  
Linlin Jiang ◽  
Lingchao Meng ◽  
Boyu Zhou ◽  
...  

The long-term property development of fly ash (FA)-based geopolymer (FA−GEO) incorporating industrial solid waste carbide slag (CS) for up to 360 d is still unclear. The objective of this study was to investigate the fresh, physical, and mechanical properties and microstructures of FA−GEO composites with CS and to evaluate the effects of CS when the composites were cured for 360 d. FA−GEO composites with CS were manufactured using FA (as an aluminosilicate precursor), CS (as a calcium additive), NaOH solution (as an alkali activator), and standard sand (as a fine aggregate). The fresh property and long-term physical properties were measured, including fluidity, bulk density, porosity, and drying shrinkage. The flexural and compressive strengths at 60 d and 360 d were tested. Furthermore, the microstructures and gel products were characterized by scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). The results show that the additional 20.0% CS reduces the fluidity and increases the conductivity of FA−GEO composites. Bulk densities were decreased, porosities were increased, and drying shrinkages were decreased as the CS content was increased from 0.0% to 20.0% at 360 d. Room temperature is a better curing condition to obtain a higher long-term mechanical strength. The addition of 20.0% CS is more beneficial to the improvement of long-term flexural strength and toughness at room temperature. The gel products in CS−FA−GEO with 20.0% CS are mainly determined as the mixtures of sodium aluminosilicate (N−A−S−H) gel and calcium silicate hydration (C−S−H) gel, besides the surficial pan-alkali. The research results provide an experimental basis for the reuse of CS in various scenarios.


2021 ◽  
Vol 248 ◽  
pp. 01040
Author(s):  
Shi Xiaoyan ◽  
Ma Leilei ◽  
Wang Jiantao

Pre-charge as a key step in the battery manufacture processes, which has a great impact on the film-forming properties and electrochemical performances, especially the Li-rich system batteries. As a key influence factor, it is necessary to clarify the effect of pre-charge temperature on battery performance. In this paper, we mainly studied the influence of different pre-charge temperatures (25°C, 40°C, 60°C) on the gas production and electrochemical performance of the batteries. The results show that the increase of the pre-charge temperature will result in the increase of gas production, and the gas components are mainly CO2, H2. After the long-term cycle, the sample under 40°C maintains the highest capacity retention rate, and as the pre-charge temperature increases, the median voltage of the battery can be effectively increased. In addition, compared with room temperature pre-charge, high pre-charge temperature samples have more excellent rate performance.


Sign in / Sign up

Export Citation Format

Share Document