Energy Efficiency in Children With Myelomeningocele During Acute Use of Assistive Devices: A Pilot Study

2018 ◽  
Vol 35 (1) ◽  
pp. 57-75 ◽  
Author(s):  
Jennifer K. Sansom ◽  
Beverly D. Ulrich

Due to increased metabolic demands during walking, ∼50% of children with myelomeningocele transition to wheelchair use during adolescence/early adulthood. The purpose of our pilot study involving children with myelomeningocele was to determine: (a) energy expenditure needs during acute use of common assistive devices and (b) if walking poles are a feasible assistive device. Oxygen uptake was recorded for eight (5–12 years old) children in four conditions: independent, walker, crutches, and poles. Acute pole use did not significantly differ from independent walking net energy consumption or cost. Participants consumed more energy while walking with the walker than independently. Our pilot results suggest that (a) acute use of common assistive devices while walking increases energy consumption and cost versus independent and (b) poles are feasible assistive devices, resulting in slightly increased energy requirements. Poles may have provided “just enough” support with minimal change in energy requirements for our participants and, with practice, may enable children with myelomeningocele to remain community ambulators.

2020 ◽  
pp. 68-76
Author(s):  
Behcet Kocaman

Historical buildings are bridges between the past and the present. Moreover, it is a mirror of the life of societies, which lived in other ages. Historic buildings need to be illuminated to provide better visual conditions. The demand for electricity is increasing day by day. Energy must be used efficiently to reduce the amount of energy being dissipated. Therefore, energy efficiency in the lighting for historical buildings is a topic of great importance. Various luminaires are used for interior and exterior lighting of historic buildings. However, new lighting technologies, such as light emitting diode (LED) luminaires, are many times more efficient than traditional technologies, such as incandescent luminaires. The use of new technologies can lead to significant reductions in net energy consumption and associated reductions in greenhouse gas emissions. Historic buildings can serve as powerful and highly visible demonstrations of energy-efficient lighting technologies. In this study, the cost and energy efficiency have been analyzed considering the investment costs and the energy consumption of LED luminaires instead of luminaires with incandescent, halogen and metal halide lamps using almost the same luminous flux in the example of the El Aman Caravanserai in Bitlis, Turkey. As a result, of the calculations, the annual energy consumption (9-066.6 kW·h) was reduced by 78.21 % compared to the conventional system (41-610 kW·h) installed with incandescent, halogen and metal halide lamps. Thus, the cost of using LED lighting system have been amortised in about 135 days. Later, lighting has been made with less energy consumption, and the energy has been used efficiently.


2021 ◽  
Vol 52 (3) ◽  
Author(s):  
Alberto Cadei ◽  
Omar Mologni ◽  
Luca Marchi ◽  
Francesco Sforza ◽  
Dominik Röser ◽  
...  

In order to reduce greenhouse gas emissions, low emission or zero-emission technologies have been applied to light and heavyduty vehicles by adopting electric propulsion systems and battery energy storage. Hybrid cable yarders and electrical slack-pulling carriages could represent an opportunity to increase the energy efficiency of forestry operations leading to lower impact timber harvesting and economic savings thanks to reduced fuel consumption. However, given the limited experience with hybrid-electric systems applied to cable yarding operations, these assumptions remain uncertain. This study assessed an uphill cable yarding operation using a hybrid cable yarder and an active slack-pulling electric power carriage over thirty working days. A total of 915 work cycles on four different cable lines were analysed. Longterm monitoring using Can-BUS data and direct field observations were used to evaluate the total energy efficiency, total energy efficiency (%), and fuel consumption per unit of timber extracted (L/m3). The use of the electric-hybrid system with a 700 V supercapacitor to store the recovered energy made it possible to reduce the running time of the engine by about 38% of the total working time. However, only 35% to 41% of the Diesel-based mechanical energy was consumed by the mainline and haulback winches. Indeed, the remaining energy was consumed by the other winches of the cable line system (skyline, strawline winches and carriage recharging or breaking during outhaul) or dissipated by the system (e.g., by the haulback blocks). With reference to all work cycles, the highest net energy consumption occurred during the inhaulunload work element with a maximum of 1.15 kWh, consuming 70% of total net energy consumption to complete a work cycle. In contrast, lower energy consumption was recorded for lateral skid and outhaul, recording a maximum of 23% and 32% of the total net energy consumption, respectively. The estimated recovered energy, on average between the four cable lines, was 2.56 kWh. Therefore, the reduced fuel need was assessed to be approximately 730 L of fuel in the 212.5 PMH15 of observation, for a total emissions reduction of 1907 kg CO2 eq, 2.08 kg CO2 eq for each work cycle.


2014 ◽  
Vol 8 (5) ◽  
pp. 733-744 ◽  
Author(s):  
Pha N. Pham ◽  
◽  
Kazuhisa Ito ◽  
Shigeru Ikeo ◽  

This study aims to determine effective methods for improving the energy efficiency of a water hydraulic Fluid Switching Transmission (FST). This paper introduces three methods to reduce energy consumption: lowering the velocity of the electric motor and stopping the motor during the working and deceleration phases, respectively (first method); restricting the working pressure within a certain range by using an unload valve (second method) or using the idling stop method (third method). Next these three methods are analyzed and compared. Experimental results show that by using the proposed methods, the energy and net energy consumption are greatly reduced. The greatest reductions are from 71.5 to 78.3% for energy consumption and from 65.1 to 66.2% for net energy consumption, corresponding to variations in the reference velocity from 600 to 1000 min-1. Additionally, the steady state errors in the proposed methods are slightly decreased in the working phase while the transient responses are almost the same for all cases.


2019 ◽  
Vol 8 (1) ◽  
pp. 18-21
Author(s):  
Lakshmi Digra ◽  
Sharanjeet Singh

Data centers are serious, energy-hungry infrastructures that can run large scale Internet based services. Energy ingesting representations are essential in designing and improving energy-efficient operations to reduce excessive energy consumption in data centers. This paper presents a survey on Energy efficiency in data centers, importance of energy efficiency. It also describes the increasing demands for data center in worldwide and the reasons for data centers energy inefficient? In this paper we define the challenges for implementing changes in data centers and explain why and how the energy requirements of data centers are growing. After that we compare the German data center market at international level and we see the energy consumption of data centers and servers in Germany from 2010 -2016.


2020 ◽  
Vol 14 ◽  
Author(s):  
M. Sivaram ◽  
V. Porkodi ◽  
Amin Salih Mohammed ◽  
S. Anbu Karuppusamy

Background: With the advent of IoT, the deployment of batteries with a limited lifetime in remote areas is a major concern. In certain conditions, the network lifetime gets restricted due to limited battery constraints. Subsequently, the collaborative approaches for key facilities help to reduce the constraint demands of the current security protocols. Aim: This work covers and combines a wide range of concepts linked by IoT based on security and energy efficiency. Specifically, this study examines the WSN energy efficiency problem in IoT and security for the management of threats in IoT through collaborative approaches and finally outlines the future. The concept of energy-efficient key protocols which clearly cover heterogeneous IoT communications among peers with different resources has been developed. Because of the low capacity of sensor nodes, energy efficiency in WSNs has been an important concern. Methods: Hence, in this paper, we present an algorithm for Artificial Bee Colony (ABC) which reviews security and energy consumption to discuss their constraints in the IoT scenarios. Results: The results of a detailed experimental assessment are analyzed in terms of communication cost, energy consumption and security, which prove the relevance of a proposed ABC approach and a key establishment. Conclusion: The validation of DTLS-ABC consists of designing an inter-node cooperation trust model for the creation of a trusted community of elements that are mutually supportive. Initial attempts to design the key methods for management are appropriate individual IoT devices. This gives the system designers, an option that considers the question of scalability.


2015 ◽  
Vol 8 (1) ◽  
pp. 206-210 ◽  
Author(s):  
Yu Junyang ◽  
Hu Zhigang ◽  
Han Yuanyuan

Current consumption of cloud computing has attracted more and more attention of scholars. The research on Hadoop as a cloud platform and its energy consumption has also received considerable attention from scholars. This paper presents a method to measure the energy consumption of jobs that run on Hadoop, and this method is used to measure the effectiveness of the implementation of periodic tasks on the platform of Hadoop. Combining with the current mainstream of energy estimate formula to conduct further analysis, this paper has reached a conclusion as how to reduce energy consumption of Hadoop by adjusting the split size or using appropriate size of workers (servers). Finally, experiments show the effectiveness of these methods as being energy-saving strategies and verify the feasibility of the methods for the measurement of periodic tasks at the same time.


Author(s):  
Akbar Hojjati Najafabadi ◽  
Saeid Amini ◽  
Farzam Farahmand

The majority of the people with incomplete spinal cord injury lose their walking ability, due to the weakness of their muscle motors in providing torque. As a result, developing assistive devices to improve their conditionis of great importance. In this study, a combined application of the saddle-assistive device (S-AD) and mechanical medial linkage or thosis was evaluated to improve the walking ability in patients with spinal cord injury in the gait laboratory. This mobile assistive device is called the saddle-assistive device equipped with medial linkage or thosis (S-ADEM). In this device, a mechanical orthosis was used in a wheeled walker as previously done in the literature. Initially, for evaluation of the proposed assistive device, the experimental results related to the forces and torques exerted on the feet and upper limbs of a person with the incomplete Spinal Cord Injury (SCI) during walking usingthe standard walker were compared with an those obtained from using the S-ADEM on an able-bodied subject. It was found that using this combination of assistive devices decreases the vertical force and torque on the foot at the time of walking by 53% and 48%, respectively compared to a standard walker. Moreover, the hand-reaction force on the upper limb was negligible instanding and walking positions usingthe introduced device. The findings of this study revealed that the walking ability of the patients with incomplete SCI was improved using the proposed device, which is due to the bodyweight support and the motion technology used in it.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 705
Author(s):  
Fatemeh Rasouli ◽  
Kyle B. Reed

Dynamic models, such as double pendulums, can generate similar dynamics as human limbs. They are versatile tools for simulating and analyzing the human walking cycle and performance under various conditions. They include multiple links, hinges, and masses that represent physical parameters of a limb or an assistive device. This study develops a mathematical model of dissimilar double pendulums that mimics human walking with unilateral gait impairment and establishes identical dynamics between asymmetric limbs. It introduces new coefficients that create biomechanical equivalence between two sides of an asymmetric gait. The numerical solution demonstrates that dissimilar double pendulums can have symmetric kinematic and kinetic outcomes. Parallel solutions with different physical parameters but similar biomechanical coefficients enable interchangeable designs that could be incorporated into gait rehabilitation treatments or alternative prosthetic and ambulatory assistive devices.


2021 ◽  
Vol 236 ◽  
pp. 110772
Author(s):  
Carmela Vetromile ◽  
Antonio Spagnuolo ◽  
Antonio Petraglia ◽  
Antonio Masiello ◽  
Maria Rosa di Cicco ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4089
Author(s):  
Kaiqiang Zhang ◽  
Dongyang Ou ◽  
Congfeng Jiang ◽  
Yeliang Qiu ◽  
Longchuan Yan

In terms of power and energy consumption, DRAMs play a key role in a modern server system as well as processors. Although power-aware scheduling is based on the proportion of energy between DRAM and other components, when running memory-intensive applications, the energy consumption of the whole server system will be significantly affected by the non-energy proportion of DRAM. Furthermore, modern servers usually use NUMA architecture to replace the original SMP architecture to increase its memory bandwidth. It is of great significance to study the energy efficiency of these two different memory architectures. Therefore, in order to explore the power consumption characteristics of servers under memory-intensive workload, this paper evaluates the power consumption and performance of memory-intensive applications in different generations of real rack servers. Through analysis, we find that: (1) Workload intensity and concurrent execution threads affects server power consumption, but a fully utilized memory system may not necessarily bring good energy efficiency indicators. (2) Even if the memory system is not fully utilized, the memory capacity of each processor core has a significant impact on application performance and server power consumption. (3) When running memory-intensive applications, memory utilization is not always a good indicator of server power consumption. (4) The reasonable use of the NUMA architecture will improve the memory energy efficiency significantly. The experimental results show that reasonable use of NUMA architecture can improve memory efficiency by 16% compared with SMP architecture, while unreasonable use of NUMA architecture reduces memory efficiency by 13%. The findings we present in this paper provide useful insights and guidance for system designers and data center operators to help them in energy-efficiency-aware job scheduling and energy conservation.


Sign in / Sign up

Export Citation Format

Share Document