scholarly journals Reproducibility of Acute Steroid Hormone Responses in Men to Short-Duration Running

2019 ◽  
Vol 14 (10) ◽  
pp. 1430-1437
Author(s):  
Diogo V. Leal ◽  
Lee Taylor ◽  
John Hough

Purpose: Progressively overloading the body to improve physical performance may lead to detrimental states of overreaching/overtraining syndrome. Blunted cycling-induced cortisol and testosterone concentrations have been suggested to indicate overreaching after intensified training periods. However, a running-based protocol is yet to be developed or demonstrated as reproducible. This study developed two 30-min running protocols, (1) 50/70 (based on individualized physical capacity) and (2) RPETP (self-paced), and measured the reproducibility of plasma cortisol and testosterone responses. Methods: Thirteen recreationally active, healthy men completed each protocol (50/70 and RPETP) on 3 occasions. Venous blood was drawn preexercise, postexercise, and 30 min postexercise. Results: Cortisol was unaffected (both P > .05; 50/70,  = .090; RPETP,  = .252), while testosterone was elevated (both P < .05; 50/70, 35%,  = .714; RPETP, 42%,  = .892) with low intraindividual coefficients of variation (CVi) as mean (SD) (50/70, 7% [5%]; RPETP, 12% [9%]). Heart rate (50/70, effect size [ES] = 0.39; RPETP, ES = −0.03), speed (RPETP, ES = −0.09), and rating of perceived exertion (50/70 ES = −0.06) were unchanged across trials (all CVi < 5%, P < .05). RPETP showed greater physiological strain (P < .01). Conclusions: Both tests elicited reproducible physiological and testosterone responses, but RPETP induced greater testosterone changes (likely due to increased physiological strain) and could therefore be considered a more sensitive tool to potentially detect overtraining syndrome. Advantageously for the practitioner, RPETP does not require a priori exercise-intensity determination, unlike the 50/70, enhancing its integration into practice.

Author(s):  
Bernardo Ide ◽  
Amanda Silvatti ◽  
Craig Staunton ◽  
Moacir Marocolo ◽  
Dustin Oranchuk ◽  
...  

The International System of Units (SI) was adopted in 1960 as a universal measuring system to be used for all areas of science. Sports Science papers have shown lots of inaccurate and inappropriate terms for quantification of athletes&rsquo; performance and the psychobiological responses to exercise (e.g., internal load). In biomechanics, external and internal loads are forces acting externally and internally, inducing stress and strain in the biological tissues. Therefore, the current review present simple proposals to correct the inappropriate terms: 1) do not use the term external load when referring to the assessment of exercise time, distance, displacement, speed, velocity, acceleration, torque, work, power, impulse, etc.; 2) do not use the term internal load when referring to the assessment of psychobiological stress markers (i.e., session rating of perceived exertion, heart rate, blood lactate, oxygen consumption, etc.); 3) do not use the term impulse when expressing other calculus than integrating force with respect to time, and neither strain, when expressing other phenomena than the body deformation. Instead, the term exercise intensity is universal and can be used to describe all forms of exercise. Finally, duration should precisely be described according to physical quantities (e.g., time, distance, displacement, speed, velocity, acceleration, force, torque, work, power, impulse, etc.) and the units accomplish by use of the SI. These simple quantifications can be performed for the exercises, sessions, microcycles, mesocycles and macrocycles of the athletes. Such standardization will provide a consistent and clear communication among sports scientists and all areas of science.


2019 ◽  
Vol 28 (4) ◽  
pp. 275 ◽  
Author(s):  
Matthew C. Dorton ◽  
Brent C. Ruby ◽  
Charles L. Dumke

Our aim was to examine the effect of a synthetic material undergarment on heat stress during exercise in a hot environment. Ten active males completed two trials of intermittent (50min walking, 10min sitting) treadmill walking over 3h in 35°C and 30% relative humidity. Subjects wore wildland firefighter flame-resistant meta-aramid blend pants and shirt with either a 100% cotton (C) or flame-retardant modacrylic undergarment (S), while carrying a 16-kg pack, helmet and leather gloves. Exercise was followed by a 30-min rest period without pack, helmet, gloves, and outerwear shirt. Rectal temperature and physiological strain were greater in S than C (P=0.04). No significant differences were found for heart rate, rating of perceived exertion, energy expenditure or skin temperature between C and S. Skin blood flow increased significantly in S following the second hour of exercise, resulting in a time×trial interaction (P=0.001). No significant differences for skin blood flow were found post exercise. Sweat rate and percent dehydration were not different between C and S. These data indicate that, of the two undergarments investigated, the synthetic undergarment negatively affected physiological factors that have been shown to indicate an increased risk of heat-related injuries.


Author(s):  
Belén Carballo-Leyenda ◽  
Jorge Gutiérrez-Arroyo ◽  
Fabio García-Heras ◽  
Pilar Sánchez-Collado ◽  
José G. Villa-Vicente ◽  
...  

The Pack Test (PT) is a widely used test to establish readiness for work in wildland firefighting. It is common to perform this test dressed in regular exercise clothing. However, wildland firefighters (WFF) have to wear personal protective equipment (PPE) during their deployments, which increases the physiological strain and reduces their work capacity. This study aimed to analyse the impact of full PPE on PT performance. Nine male professional WFF performed in random order a PT walking at the fastest possible self-pace wearing two different clothing configurations: (i) traditional short sports gear (SG) and (ii) the PPE currently used by Spanish WFF. Heart rate (HR), rating of perceived exertion and lap time were recorded during the PT. In addition, oxygen uptake (VO2) was estimated through the individual VO2–HR relationship previously obtained during a graded exercise test. There was a significant decrease in the PT performance (i.e., completion time) (~12%, p < 0.05) in PPE. The physiological demands with this configuration were significantly higher (~10%, p < 0.05). WFF spent ~13 min above the anaerobic threshold in PPE vs. ~4 min in SG. A multiple stepwise regression analysis revealed that PT performance variation might be explained by the maximal aerobic velocity (84.5%) in PPE and the VO2max (75.9%) in SG. In conclusion, wearing complete PPE increases WFF’s physiological strain, which translates into a significant PT performance reduction. Performing the test walking at the fastest possible self-pace wearing the PPE would better reflect the high-intensity effort periods reported in real scenarios.


Author(s):  
Patrick J. Highton ◽  
Daniel S. March ◽  
Darren R. Churchward ◽  
Charlotte E. Grantham ◽  
Hannah M. L. Young ◽  
...  

Abstract Purpose Patients receiving haemodialysis (HD) display elevated circulating microparticle (MP) concentration, tissue factor (TF) expression and markers of systemic inflammation, though regular intradialytic cycling (IDC) may have a therapeutic effect. This study investigated the impact of regular, moderate-intensity IDC on circulating MPs and inflammatory markers in unit-based HD patients. Methods Patients were cluster-randomised to intervention (n = 20, age: 51.4 ± 18.1 years, body mass: 77.6 ± 18.3 kg, mean ± SD) or no-exercise control (n = 20, 56.8 ± 14.0 years, 80.5 ± 26.5 kg). Intervention participants completed 30 min of moderate intensity (rating of perceived exertion [RPE] of 12–14) IDC, thrice weekly for 6 months. Pre-dialysis venous blood samples were obtained at 0, 3 and 6 months. Circulating MP phenotypes, cytokines, chemokine and MP TF expression were quantified using flow cytometry and cytometric bead array assays. Results Despite high exercise compliance (82%), no IDC-dependent effects were observed for any MP, cytokine or chemokine measure (p ≥ 0.051, ηρ2 ≤ 0.399) other than TNF-α (p = 0.001, ηρ2 = 0.186), though no significance was revealed upon post hoc analysis. Conclusion Six months of regular, moderate-intensity IDC had no effect on MPs, cytokines or chemokines. This suggests that the exercise did not exacerbate thrombotic or inflammatory status, though further functional assays are required to confirm this. Trial registration ISRCTN1129707, prospectively registered on 05/03/2015.


2021 ◽  
Vol 05 (03) ◽  
pp. E91-E98
Author(s):  
Jumpei Osakabe ◽  
Masanobu Kajiki ◽  
Kiho Kondo ◽  
Takaaki Matsumoto ◽  
Yoshihisa Umemura

AbstractThe present study investigated the effects of half-time (HT) break cooling using a fan and damp sponge on physiological and perceptual responses during the 2nd half of a repeated-sprint exercise in a hot environment. Eight physically active men performed a familiarization trial and two experimental trials of a 2×30-min intermittent cycling exercise protocol with a 15-min HT break in hot conditions (35°C, 50% relative humidity). Two experimental trials were conducted in random order: skin wetting with a fan (FANwet) and no cooling (CON). During the 2nd half, a repeated-sprint cycling exercise was performed: i. e., 5 s of maximal pedaling (body weight×0.075 kp) every minute, separated by 25 s of unloaded pedaling (80 rpm) and 30 s of rest. Rectal temperature, skin temperature (chest, forearm, thigh, and calf), heart rate, physiological strain index, rating of perceived exertion, thermal sensation, and comfort were significantly improved in the FANwet condition (P<0.05). There was no significant difference in the repeated-sprint cycling exercise performance between conditions. The results suggest that skin wetting with a fan during the HT break is a practical and effective cooling strategy for mitigating physiological and perceptual strain during the 2nd half in hot conditions.


2020 ◽  
Vol 5 (1) ◽  
pp. 15 ◽  
Author(s):  
Andrea Fusco ◽  
William Sustercich ◽  
Keegan Edgerton ◽  
Cristina Cortis ◽  
Salvador J. Jaime ◽  
...  

Rating of perceived exertion (RPE) and session RPE (sRPE) are reliable tools for predicting exercise intensity and are alternatives to more technological and physiological measurements, such as blood lactate (HLa) concentration, oxygen consumption and heart rate (HR). As sRPE may also convey some insights into accumulated fatigue, the purpose of this study was to examine the effects of progressive fatigue in response to heavier-than-normal training on sRPE, with absolute training intensity held constant, and determine its validity as marker of fatigue. Twelve young adults performed eight interval workouts over a two-week period. The percentage of maximal HR (%HRmax), HLa, RPE and sRPE were measured for each session. The HLa/RPE ratio was calculated as an index of fatigue. Multilevel regression analysis showed significant differences for %HRmax (p = 0.004), HLa concentration (p = 0.0001), RPE (p < 0.0001), HLa/RPE ratio (p = 0.0002) and sRPE (p < 0.0001) across sessions. Non-linear regression analysis revealed a very large negative relationship between HLa/RPE ratio and sRPE (r = −0.70, p < 0.0001). These results support the hypothesis that sRPE is a sensitive tool that provides information on accumulated fatigue, in addition to training intensity. Exercise scientists without access to HLa measurements may now be able to gain insights into accumulated fatigue during periods of increased training by using sRPE.


2013 ◽  
Vol 8 (4) ◽  
pp. 352-357 ◽  
Author(s):  
Jacob Cohen ◽  
Bridgette Reiner ◽  
Carl Foster ◽  
Jos J. de Koning ◽  
Glenn Wright ◽  
...  

The rating of perceived exertion (RPE) normally grows as a scalar function of relative competitive distance, suggesting that it may translate between the brain and body relative to managing fatigue during time-trial exercise. In nonstandard pacing situations, a reciprocal relationship between RPE and power output (PO) would be predicted.Purpose:To determine whether PO would decrease when RPE was forced above the normal growth curve during a cycle time trial.Methods:Well-trained cyclists performed randomly ordered 10-km cycle time trials. In CONTROL they rode at their own best pace throughout. In BURST, they made a 1-km “burst” at the 4-km mark and then finished as rapidly as possible.Results:CONTROL was significantly (P < .05) faster than BURST (16:36 vs 17:00 min). During CONTROL, responses between 4 and 5 km were PO, 240 W; RPE, 5–6; and blood lactate [HLa], 8–9 mmol/L. During BURST PO increased to 282 W, then fell to 220 W after the burst and remained below CONTROL until the end spurt (9 km). RPE increased to 9 during the burst but returned to the normal RPE growth pattern by 6 km; [HLa] increased to ~13 mmol/L after the burst and remained elevated throughout the remainder of the trial.Conclusions:The reciprocal behavior of RPE and PO after BURST supports the hypothesis that RPE translates between the brain and the body during heavy exercise. However, the continuing reduction of PO after the burst, even after RPE returned to its normal growth pattern, suggests that PO is regulated in a more complex manner than reflected solely by RPE.


2016 ◽  
Vol 11 (7) ◽  
pp. 913-919 ◽  
Author(s):  
Jose Morales ◽  
Emerson Franchini ◽  
Xavier Garcia-Massó ◽  
Mónica Solana-Tramunt ◽  
Bernat Buscà ◽  
...  

Purpose:To adapt the work endurance recovery (WER) method based on randori maximal time to exhaustion (RMTE) for combat situations in judo.Methods:Eleven international-standard judo athletes (7 men and 4 women; mean age 20.73 ± 2.49 y, height 1.72 ± 0.11 m, body mass 67.36 ± 10.67 kg) were recruited to take part in the study. All participants performed a maximal incremental test (MIT), a Wingate test (WIN), a Special Judo Fitness Test (SJFT), and 2 RMTE tests. They then took part in a session at an international training camp in Barcelona, Spain, in which 4 methods of load quantification were implemented: the WER method, the Stagno method, the Lucia method, and the session rating of perceived exertion (RPEsession).Results:RMTE demonstrated a very high test–retest reliability (intraclass correlation coefficient = .91), and correlations of the performance tests ranged from moderate to high: RMTE and MIT (r = .66), RMTE and WIN variables (r = .38–.53), RMTE and SJFT variables (r = .74–.77). The correlation between the WER method, which considers time to exhaustion, and the other systems for quantifying training load was high: WER and RPEsession (r = .87), WER and Stagno (r = .77), WER and Lucia (r = .73). A comparative repeated-measures analysis of variance of the normalized values of the quantification did not yield statistically significant differences.Conclusions:The WER method using RMTE is highly adaptable to quantify randori judo sessions and enables one to plan a priori individualized training loads.


2020 ◽  
Vol 15 (6) ◽  
pp. 833-840
Author(s):  
Devin G. McCarthy ◽  
Kate A. Wickham ◽  
Tyler F. Vermeulen ◽  
Danielle L. Nyman ◽  
Shane Ferth ◽  
...  

During play, ice hockey goaltenders routinely dehydrate through sweating and lose ≥2% body mass, which may impair thermoregulation and performance. Purpose: This randomized, crossover study examined the effects of mild dehydration on goaltender on-ice thermoregulation, heart rate, fatigue, and performance. Methods: Eleven goaltenders played a 70-minute scrimmage followed by a shootout and drills to analyze reaction time and movements. On ice, they either consumed no fluid (NF) and lost 2.4% (0.3%) body mass or maintained body mass with water (WAT) or a carbohydrate–electrolyte solution (CES). Save percentage, rating of perceived exertion, heart rate, and core temperature were recorded throughout, and a postskate questionnaire assessed perceived fatigue. Results: Relative to NF, intake of both fluids decreased heart rate (interaction: P = .03), core temperature (peak NF = 39.0°C [0.1°C], WAT = 38.6°C [0.1°C], and CES = 38.5°C [0.1°C]; P = .005), and rating of perceived exertion in the scrimmage (post hoc: P < .04), as well as increasing save percentage in the final 10 minutes of scrimmage (NF = 75.8% [1.9%], WAT = 81.7% [2.3%], and CES = 81.3% [2.3%], post hoc: P < .04). In drills, movement speed (post hoc: P < .05) and reaction time (post hoc: P < .04) were slower in the NF versus both fluid conditions. Intake of either fluid similarly reduced postskate questionnaire scores (condition: P < .0001). Only CES significantly reduced rating of perceived exertion in drills (post hoc: P < .05) and increased peak movement power versus NF (post hoc: P = .02). Shootout save percentage was similar between conditions (P = .37). Conclusions: Mild dehydration increased physiological strain and fatigue and decreased ice hockey goaltender performance versus maintaining hydration. Also, maintaining hydration with a CES versus WAT may further reduce perceived fatigue and positively affect movements.


2009 ◽  
Vol 106 (2) ◽  
pp. 476-485 ◽  
Author(s):  
Michael F. Bergeron ◽  
Melissa D. Laird ◽  
Elaina L. Marinik ◽  
Joel S. Brenner ◽  
Jennifer L. Waller

A short recovery period between same-day competitions is common practice in organized youth sports. We hypothesized that young athletes will experience an increase in physiological strain and perceptual discomfort during a second identical exercise bout in the heat, with 1 h (21°C) between bouts, even with ample hydration. Twenty-four athletes (6 boys and 6 girls: 12–13 yr old, 47.7 ± 8.3 kg; 6 boys and 6 girls: 16–17 yr old, 61.0 ± 8.6 kg) completed two 80-min intermittent exercise bouts (treadmill 60%, cycle 40% peak oxygen uptake) in the heat (33°C, 48.9 ± 6.1% relative humidity). Sweat loss during each bout was similar within each age group (12–13 yr old: bout 1, 943.6 ± 237.1 ml; bout 2, 955.5 ± 250.3 ml; 16–17 yr old: bout 1, 1,382.2 ± 480.7 ml; bout 2, 1,373.1 ± 472.2 ml). Area under the curve (AUC) was not statistically different ( P > 0.05) between bouts for core body temperature (12–13 yr old: bout 1 peak, 38.6 ± 0.4°C; bout 2, 38.4 ± 0.2°C; 16–17 yr old: bout 1 peak, 38.8 ± 0.7°C; bout 2, 38.7 ± 0.6°C), physiological strain index (12–13 yr old: bout 1 peak, 7.9 ± 0.9; bout 2, 7.5 ± 0.7; 16–17 yr old: bout 1 peak, 8.1 ± 1.5; bout 2, 7.9 ± 1.4), or thermal sensation for any age/sex subgroup or for all subjects combined. However, rating of perceived exertion AUC and peak were higher ( P = 0.0090 and 0.0004, respectively) during bout 2 in the older age group. Notably, four subjects experienced consistently higher responses throughout bout 2. With these healthy, fit, young athletes, 1 h of complete rest, cool down, and rehydration following 80 min of strenuous exercise in the heat was generally effective in eliminating any apparent carryover effects that would have resulted in greater thermal and cardiovascular strain during a subsequent identical exercise bout.


Sign in / Sign up

Export Citation Format

Share Document