The Work Endurance Recovery Method for Quantifying Training Loads in Judo

2016 ◽  
Vol 11 (7) ◽  
pp. 913-919 ◽  
Author(s):  
Jose Morales ◽  
Emerson Franchini ◽  
Xavier Garcia-Massó ◽  
Mónica Solana-Tramunt ◽  
Bernat Buscà ◽  
...  

Purpose:To adapt the work endurance recovery (WER) method based on randori maximal time to exhaustion (RMTE) for combat situations in judo.Methods:Eleven international-standard judo athletes (7 men and 4 women; mean age 20.73 ± 2.49 y, height 1.72 ± 0.11 m, body mass 67.36 ± 10.67 kg) were recruited to take part in the study. All participants performed a maximal incremental test (MIT), a Wingate test (WIN), a Special Judo Fitness Test (SJFT), and 2 RMTE tests. They then took part in a session at an international training camp in Barcelona, Spain, in which 4 methods of load quantification were implemented: the WER method, the Stagno method, the Lucia method, and the session rating of perceived exertion (RPEsession).Results:RMTE demonstrated a very high test–retest reliability (intraclass correlation coefficient = .91), and correlations of the performance tests ranged from moderate to high: RMTE and MIT (r = .66), RMTE and WIN variables (r = .38–.53), RMTE and SJFT variables (r = .74–.77). The correlation between the WER method, which considers time to exhaustion, and the other systems for quantifying training load was high: WER and RPEsession (r = .87), WER and Stagno (r = .77), WER and Lucia (r = .73). A comparative repeated-measures analysis of variance of the normalized values of the quantification did not yield statistically significant differences.Conclusions:The WER method using RMTE is highly adaptable to quantify randori judo sessions and enables one to plan a priori individualized training loads.

2019 ◽  
Vol 14 (9) ◽  
pp. 1244-1249 ◽  
Author(s):  
Chelsie E. Winchcombe ◽  
Martyn J. Binnie ◽  
Matthew M. Doyle ◽  
Cruz Hogan ◽  
Peter Peeling

Purpose: To determine the reliability and validity of a power-prescribed on-water (OW) graded exercise test (GXT) for flat-water sprint kayak athletes. Methods: Nine well-trained sprint kayak athletes performed 3 GXTs in a repeated-measures design. The initial GXT was performed on a stationary kayak ergometer in the laboratory (LAB). The subsequent 2 GXTs were performed OW (OW1 and OW2) in an individual kayak. Power output (PWR), stroke rate, blood lactate, heart rate, oxygen consumption, and rating of perceived exertion were measured throughout each test. Results: Both PWR and oxygen consumption showed excellent test–retest reliability between OW1 and OW2 for all 7 stages (intraclass correlation coefficient > .90). The mean results from the 2 OW GXTs (OWAVE) were then compared with LAB, and no differences in oxygen consumption across stages were evident (P ≥ .159). PWR was higher for OWAVE than for LAB in all stages (P ≤ .021) except stage 7 (P = .070). Conversely, stroke rate was lower for OWAVE than for LAB in all stages (P < .010) except stage 2 (P = .120). Conclusions: The OW GXT appears to be a reliable test in well-trained sprint kayak athletes. Given the differences in PWR and stroke rate between the LAB and OW tests, an OW GXT may provide more specific outcomes for OW training.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Sandro S. Ferreira ◽  
Kleverton Krinski ◽  
Ragami C. Alves ◽  
Mariana L. Benites ◽  
Paulo E. Redkva ◽  
...  

The rating of perceived exertion (RPE) is ability to detect and interpret organic sensations while performing exercises. This method has been used to measure the level of effort that is felt during weight-training at a given intensity. The purpose of this investigation was to compare session RPE values with those of traditional RPE measurements for different weight-training muscle actions, performed together or separately. Fourteen women with no former weight-training experience were recruited for the investigation. All participants completed five sessions of exercise: familiarization, maximum force, concentric-only (CONC-only), eccentric-only (ECC-only), and dynamic (DYN = CONC + ECC). The traditional RPE method was measured after each series of exercises, and the session RPE was measured 30 min after the end of the training session. The statistical analyses used were the pairedt-test, one-way analysis of variance, and repeated measures analysis of variance. Significant differences between traditional RPE and session RPE for DYN, CONC, and ECC exercises were not found. This investigation demonstrated that session RPE is similar to traditional RPE in terms of weight-training involving concentric, eccentric, or dynamic muscle exercises, and that it can be used to prescribe and monitor weight-training sessions in older subjects.


2014 ◽  
Vol 9 (5) ◽  
pp. 772-776 ◽  
Author(s):  
Naiandra Dittrich ◽  
Ricardo Dantas de Lucas ◽  
Ralph Beneke ◽  
Luiz Guilherme Antonacci Guglielmo

The purpose of this study was to determine and compare the time to exhaustion (TE) and the physiological responses at continuous and intermittent (ratio 5:1) maximal lactate steady state (MLSS) in well-trained runners. Ten athletes (32.7 ± 6.9 y, VO2max 61.7 ± 3.9 mL · kg−1 · min−1) performed an incremental treadmill test, three to five 30-min constant-speed tests to determine the MLSS continuous and intermittent (5 min of running, interspaced by 1 min of passive rest), and 2 randomized TE tests at such intensities. Two-way ANOVA with repeated measures was used to compare the changes in physiological variables during the TE tests and between continuous and intermittent exercise. The intermittent MLSS velocity (MLSSint = 15.26 ± 0.97 km/h) was higher than in the continuous model (MLSScon = 14.53 ± 0.93 km/h), while the TE at MLSScon was longer than MLSSint (68 ± 11 min and 58 ± 15 min, P < .05). Regarding the cardiorespiratory responses, VO2 and respiratory-exchange ratio remained stable during both TE tests while heart rate, ventilation, and rating of perceived exertion presented a significant increase in the last portion of the tests. The results showed a higher tolerance to exercising during MLSScon than during MLSSint in trained runners. Thus, the training volume of an extensive interval session (ratio 5:1) designed at MLSS intensity should take into consideration this higher speed at MLSS and also the lower TE than with continuous exercise.


Author(s):  
Davide Ferioli ◽  
Aaron T. Scanlan ◽  
Daniele Conte ◽  
Emanuele Tibiletti ◽  
Ermanno Rampinini

Purpose: To quantify and compare the internal workloads experienced during the playoffs and regular season in basketball. Methods: A total of 10 professional male basketball players competing in the Italian first division were monitored during the final 6 weeks of the regular season and the entire 6-week playoff phase. Internal workload was quantified using the session rating of perceived exertion (s-RPE) method for all training sessions and games. A 2-way repeated-measures analysis of variance (day type × period) was utilized to assess differences in daily s-RPE between game days, days within 24 hours of games, and days >24 hours from games during the playoffs and regular season. Comparisons in weekly training, game, and total workloads were made between the playoffs and regular season using paired t tests and effect sizes. Results: A significant interaction between day and competitive period for s-RPE was found (P = .003, moderate). Lower s-RPE was apparent during playoff and regular-season days within 24 hours of games than all other days (P < .001, very large). Furthermore, s-RPE across days >24 hours from playoff games was different than all other days (P ≤ .01, moderate–very large). Weekly training (P = .009, very large) and total (P < .001, moderate) s-RPE were greater during the regular season than playoffs, whereas weekly game s-RPE was greater during the playoffs than the regular season (P < .001, very large). Conclusions: This study presents an exploratory investigation of internal workload during the playoffs in professional basketball. Players experienced greater training and total weekly workloads during the regular season than during the playoffs with similar daily game workloads between periods.


Author(s):  
Allison M. Seifert ◽  
Elizabeth M. Mullin ◽  
Sarah Zehnder ◽  
Vincent J. Paolone

The purpose of this study was to design and validate a peak functional capacity test that is physiologically comprehensive and appropriate in movement for dancers with broad dance backgrounds. The Seifert Assessment of Functional Capacity for Dancers (SAFD) employs commonly utilized dance movements in progressively intense 3-minute stages, continued until volitional exhaustion. A convenience sample of 13 female collegiate dancers completed a familiarization trial of the SAFD, an SAFD trial, a peak treadmill test, and a second SAFD trial. Time to exhaustion, peak oxygen consumption (VO2peak), respiratory exchange ratio (RER), heart rate (HR), blood lactate (BLa), and rate of perceived exertion (RPE) were measured with each trial. Intraclass correlation coefficients (ICCs) were used to assess test-retest reliability, while concurrent validity was analyzed using Pearson product-moment correlations (PPMCs). Strong ICCs were found between the SAFD trials for time to exhaustion, VO2peak, HR, and RPE, providing evidence of test-retest reliability of the SAFD. Significant positive relationships were found between time to exhaustion, VO2peak, HR, BLa, and RPE for the SAFD and the treadmill test, providing evidence of concurrent validity of the SAFD. The data reported in the study provide initial evidence of reliability and validity for the SAFD.


2000 ◽  
Vol 9 (2) ◽  
pp. 117-123 ◽  
Author(s):  
Michael D. Ross ◽  
Elizabeth G. Fontenot

Context:The standing heel-rise test has been recommended as a means of assessing calf-muscle performance. To the authors' knowledge, the reliability of the test using intraclass correlation coefficients (ICCs) has not been reported.Objective:To determine the test-retest reliability of the standing heel-rise test.Design:Single-group repeated measures.Participants:Seventeen healthy subjects.Settings and Infevention:Each subject was asked to perform as many standing heel raises as possible during 2 testing sessions separated by 7 days.Main Outcome Measures:Reliability data for the standing heel-rise test were studied through a repeated-measures analysis of variance, ICC2, 1 and SEMs.Results:The ICC2,1 and SEM values for the standing heel-rise test were .96 and 2.07 repetitions, respectively.Conclusions:The standing heel-rise test offers clinicians a reliable assessment of calfmuscle performance. Further study is necessary to determine the ability of the standing heel-rise test to detect functional deficiencies in patients recovering from lower leg injury or surgery


Author(s):  
Erik P. Andersson ◽  
Irina Hämberg ◽  
Paulo Cesar Do Nascimento Salvador ◽  
Kerry McGawley

Abstract Purpose This study aimed to compare physiological factors and cycle characteristics during cross-country (XC) roller-skiing at matched inclines and speeds using the double-poling (DP) and diagonal-stride (DS) sub-techniques in junior female and male XC skiers. Methods Twenty-three well-trained junior XC skiers (11 women, 12 men; age 18.2 ± 1.2 yr.) completed two treadmill roller-skiing tests in a randomized order using either DP or DS. The exercise protocols were identical and included a 5 min warm-up, 4 × 5 min submaximal stages, and an incremental test to exhaustion, all performed at a 5° incline. Results No significant three-way interactions were observed between sex, submaximal exercise intensity, and sub-technique. For the pooled sample, higher values were observed for DP versus DS during submaximal exercise for the mean oxygen uptake kinetics response time (33%), energy cost (18%), heart rate (HR) (9%), blood lactate concentration (5.1 versus 2.1 mmol·L−1), rating of perceived exertion (12%), and cycle rate (25%), while cycle length was lower (19%) (all P < 0.001). During the time-to-exhaustion (TTE) test, peak oxygen uptake ($$\dot{V}$$ V ˙ O2peak), peak HR, and peak oxygen pulse were 8%, 2%, and 6% lower, respectively, for DP than DS, with a 29% shorter TTE during DP (pooled data, all P < 0.001). Conclusion In well-trained junior XC skiers, DP was found to exert a greater physiological load than DS during uphill XC roller-skiing at submaximal intensities. During the TTE test, both female and male athletes were able to ski for longer and reached markedly higher $$\dot{V}$$ V ˙ O2peak values when using DS compared to DP.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yanzhi Bi ◽  
Xin Hou ◽  
Jiahui Zhong ◽  
Li Hu

AbstractPain perception is a subjective experience and highly variable across time. Brain responses evoked by nociceptive stimuli are highly associated with pain perception and also showed considerable variability. To date, the test–retest reliability of laser-evoked pain perception and its associated brain responses across sessions remain unclear. Here, an experiment with a within-subject repeated-measures design was performed in 22 healthy volunteers. Radiant-heat laser stimuli were delivered on subjects’ left-hand dorsum in two sessions separated by 1–5 days. We observed that laser-evoked pain perception was significantly declined across sessions, coupled with decreased brain responses in the bilateral primary somatosensory cortex (S1), right primary motor cortex, supplementary motor area, and middle cingulate cortex. Intraclass correlation coefficients between the two sessions showed “fair” to “moderate” test–retest reliability for pain perception and brain responses. Additionally, we observed lower resting-state brain activity in the right S1 and lower resting-state functional connectivity between right S1 and dorsolateral prefrontal cortex in the second session than the first session. Altogether, being possibly influenced by changes of baseline mental state, laser-evoked pain perception and brain responses showed considerable across-session variability. This phenomenon should be considered when designing experiments for laboratory studies and evaluating pain abnormalities in clinical practice.


2016 ◽  
Vol 11 (6) ◽  
pp. 707-714 ◽  
Author(s):  
Benoit Capostagno ◽  
Michael I. Lambert ◽  
Robert P. Lamberts

Finding the optimal balance between high training loads and recovery is a constant challenge for cyclists and their coaches. Monitoring improvements in performance and levels of fatigue is recommended to correctly adjust training to ensure optimal adaptation. However, many performance tests require a maximal or exhaustive effort, which reduces their real-world application. The purpose of this review was to investigate the development and use of submaximal cycling tests that can be used to predict and monitor cycling performance and training status. Twelve studies met the inclusion criteria, and 3 separate submaximal cycling tests were identified from within those 12. Submaximal variables including gross mechanical efficiency, oxygen uptake (VO2), heart rate, lactate, predicted time to exhaustion (pTE), rating of perceived exertion (RPE), power output, and heart-rate recovery (HRR) were the components of the 3 tests. pTE, submaximal power output, RPE, and HRR appear to have the most value for monitoring improvements in performance and indicate a state of fatigue. This literature review shows that several submaximal cycle tests have been developed over the last decade with the aim to predict, monitor, and optimize cycling performance. To be able to conduct a submaximal test on a regular basis, the test needs to be short in duration and as noninvasive as possible. In addition, a test should capture multiple variables and use multivariate analyses to interpret the submaximal outcomes correctly and alter training prescription if needed.


2021 ◽  
pp. 1-9
Author(s):  
Adam J. Wells ◽  
Bri-ana D.I. Johnson

Context: The Dynavision D2™ Mode A test (ModeA) is a 1-minute reaction time (RT) test commonly used in sports science research and clinical rehabilitation. However, there is limited data regarding the effect of repeated testing (ie, training) or subsequent periods of no testing (ie, detraining) on test–retest reliability and RT performance. Therefore, the purpose of this study was to examine the test–retest reliability, training, and detraining effects associated with the D2™ ModeA test. Design: Repeated measures/reliability. Methods: Twenty-four recreationally active men and women completed 15 training sessions consisting of 2 ModeA tests per session (30 tests). The participants were then randomized to either 1 or 2 weeks of detraining prior to completing 15 retraining sessions (30 tests). The training and retraining periods were separated into 10 blocks for analysis (3 tests per block). The number of hits (hits) and the average RT per hit (AvgRT) within each block were used to determine RT performance. Intraclass correlation coefficients, SEM, and minimum difference were used to determine reliability. Repeated-measures analysis of variance/analysis of covariance were used to determine training and detraining effects, respectively. Results: The ModeA variables demonstrated excellent test–retest reliability (intraclass correlation coefficient2,3 > .93). Significant improvements in hits and AvgRT were noted within training blocks 1 to 5 (P < .05). No further improvements in RT performance were noted between training blocks 6 through 10. There was no effect of detraining period on RT. The RT performance was not different between blocks during retraining. Conclusions: It appears that 15 tests are necessary to overcome the training effect and establish reliable baseline performance for the ModeA test. Detraining for 1 to 2 weeks did not impact RT performance. The authors recommend that investigators and clinicians utilize the average of 3 tests when assessing RT performance using the D2 ModeA test.


Sign in / Sign up

Export Citation Format

Share Document