The Effects of Compression Garments on Intermittent Exercise Performance and Recovery on Consecutive Days

2008 ◽  
Vol 3 (4) ◽  
pp. 454-468 ◽  
Author(s):  
Rob Duffield ◽  
Johann Edge ◽  
Robert Merrells ◽  
Emma Hawke ◽  
Matt Barnes ◽  
...  

Purpose:The aim of this study was to determine whether compression garments improve intermittent-sprint performance and aid performance or self-reported recovery from high-intensity efforts on consecutive days.Methods:Following familiarization, 14 male rugby players performed two randomized testing conditions (with or without garments) involving consecutive days of a simulated team sport exercise protocol, separated by 24 h of recovery within each condition and 2 weeks between conditions. Each day involved an 80-min high-intensity exercise circuit, with exercise performance determined by repeated 20-m sprints and peak power on a cart dynamometer (single-man scrum machine). Measures of nude mass, heart rate, skin and tympanic temperature, and blood lactate (La−) were recorded throughout each day; also, creatine kinase (CK) and muscle soreness were recorded each day and 48 h following exercise.Results:No differences (P = .20 to 0.40) were present between conditions on either day of the exercise protocol for repeated 20-m sprint efforts or peak power on a cart dynamometer. Heart rate, tympanic temperature, and body mass did not significantly differ between conditions; however, skin temperature was higher under the compression garments. Although no differences (P = .50) in La− or CK were present, participants felt reduced levels of perceived muscle soreness in the ensuing 48 h postexercise when wearing the garments (2.5 ± 1.7 vs 3.5 ± 2.1 for garment and control; P = .01).Conclusions:The use of compression garments did not improve or hamper simulated team-sport activity on consecutive days. Despite benefits of reduced self-reported muscle soreness when wearing garments during and following exercise each day, no improvements in performance or recovery were apparent.

2019 ◽  
Vol 40 (08) ◽  
pp. 511-518 ◽  
Author(s):  
Ruben Collins ◽  
Denise McGrath ◽  
Katy Horner ◽  
Silvia Eusebi ◽  
Massimiliano Ditroilo

AbstractExternal counterpulsation (ECP), an electrocardiogram-led sequential compression of lower limbs, has been recently proposed for sports recovery, but research is scant. This study examined the effects of an ECP session upon neuromuscular function (vertical jump and torque/velocity characteristics), biochemical responses (creatine kinase, cortisol, testosterone, alpha-amylase and immunoglobulin-A), and muscle soreness (visual analogue scale) following high-intensity exercise. Twenty-one male team sport athletes (age: 21.6±3.4 yrs; height: 182.7±7.3 cm; body mass: 82.7±9.3 kg) recovered from the fatiguing exercise using either ECP or rest. Data collection was conducted at three separate time points: upon arrival (Pre), post-recovery (Post), and 24 h post-recovery (24hPost). Significant main effects for time were observed for increased torque/velocity slope and for decreased isometric extension peak torque (p<0.001). Significant main effects for time were observed for increased creatine kinase, testosterone, alpha-amylase, and muscle soreness (all p<0.001). Significant interaction effects were observed at post-testing following ECP: Cortisol release and the related decline in testosterone/cortisol ratio were attenuated, and immunoglobulin-A was increased following ECP in comparison to the control (all p<0.05). Following high-intensity exercise, ECP has potentially beneficial effects upon biomarkers of recovery, without affecting the neuromuscular function.


2003 ◽  
Vol 13 (4) ◽  
pp. 466-478 ◽  
Author(s):  
Jesse Fleming ◽  
Matthew J. Sharman ◽  
Neva G. Avery ◽  
Dawn M. Love ◽  
Ana L. Gómez ◽  
...  

The effects of adaptation to a high-fat diet on endurance performance are equivocal, and there is little data regarding the effects on high-intensity exercise performance. This study examined the effects of a high-fat/moderate protein diet on submaximal, maximal, and supramaximal performance. Twenty non-highly trained men were assigned to either a high-fat/moderate-protein (HFMP; 61% fat) diet (n = 12) or a control (C; 25% fat) group (n = 8). A maximal oxygen consumption test, two 30-s Wingate anaerobic tests, and a 45-min timed ride were performed before and after 6 weeks of diet and training. Body mass decreased significantly (–2.2 kg; p ≤ .05) in HFMP subjects. Maximal oxygen consumption significantly decreased in the HFMP group (3.5 ± 0.14 to 3.27 ± 0.09 L · min−1) but was unaffected when corrected for body mass. Perceived exertion was significantly higher during this test in the HFMP group. Main time effects indicated that peak and mean power decreased significantly during bout 1 of the Wingate sprints in the HFMP (–10 and –20%, respectively) group but not the C (–8 and –16%, respectively) group. Only peak power was lower during bout 1 in the HFMP group when corrected for body mass. Despite significantly reduced RER values in the HFMP group during the 45-min cycling bout, work output was significantly decreased (–18%). Adaptation to a 6-week HFMP diet in non-highly trained men resulted in increased fat oxidation during exercise and small decrements in peak power output and endurance performance. These deleterious effects on exercise performance may be accounted for in part by a reduction in body mass and/or increased ratings of perceived exertion.


2014 ◽  
Vol 9 (3) ◽  
pp. 387-396 ◽  
Author(s):  
Mark Hayes ◽  
Paul C. Castle ◽  
Emma Z. Ross ◽  
Neil S. Maxwell

Purpose:To examine the effect of a hot humid (HH) compared with a hot dry (HD) environment, matched for heat stress, on intermittent-sprint performance. In comparison with HD, HH environments compromise evaporative heat loss and decrease exercise tolerance. It was hypothesized that HH would produce greater physiological strain and reduce intermittent-sprint exercise performance compared with HD.Method:Eleven male team-sport players completed the cycling intermittent-sprint protocol (CISP) in 3 conditions, temperate (TEMP; 21.2°C ± 1.3°C, 48.6% ± 8.4% relative humidity [rh]), HH (33.7°C ± 0.5°C, 78.2% ± 2.3% rh), and HD (40.2°C ± 0.2°C, 33.1% ± 4.9% rh), with both heat conditions matched for heat stress.Results:All participants completed the CISP in TEMP, but 3 failed to completed the full protocol of 20 sprints in HH and HD. Peak power output declined in all conditions (P < .05) but was not different between any condition (sprints 1–14 [N = 11]: HH 1073 ± 150 W, HD 1104 ± 127 W, TEMP, 1074 ± 134; sprints 15–20 [N = 8]: HH 954 ± 114 W, HD 997 ± 115 W, TEMP 993 ± 94; P > .05). Physiological strain was not significantly different in HH compared with HD, but HH was higher than TEMP (P < .05).Conclusion:Intermittent-sprint exercise performance of 40 min duration is impaired, but it is not different in HH and HD environments matched for heat stress despite evidence of a trend toward greater physiological strain in an HH environment.


2021 ◽  
Vol 28 (Supplement_1) ◽  
Author(s):  
T Kambic ◽  
M Lainscak

Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – National budget only. Main funding source(s): Slovenian Research Agency Background Over the last years exercise training has gained IA class recommendation as a core component of cardiac rehabilitation (CR) in patients with coronary artery disease (CAD). Despite the strong evidence of higher mortality and rehospitalisation rates in women compared with men with CAD, women are less frequently enrolled in CR programs and show lower exercise adherence. However, when enrolled women showed similar improvement as men, but this remains to be further elucidated. Purpose The aim of this study was to examine the gender differences in improvement of exercise performance in patients with CAD following CR programme. Methods A total of 91 patients with CAD (74 men and 17 women, mean (SD), aged 59 (11) years and 60 (10) years, p &gt; 0.05; median (interquartile range), height 177 (173, 181) cm and 159 (158, 167) cm, p &lt; 0.001; weight 92.1 (82.4, 98.6) kg and 72.3 (69.1, 79.6) kg, p = 0.001, respectively) participated in out-patient CR. Each patient completed 36 exercise sessions comprised of general warm up with calisthenics, followed by 5 aerobic intervals of cycling on stationary bikes (5 minutes of loaded cycling at the intensity of 50 %-70% of peak power separated by 2 minutes intervals of unloading cycling) and finished with stretching and breathing exercises. Training load and target training heart rate were increased every two weeks. The exercise test was performed at baseline and after CR. Results At baseline, there was a significant difference between men and women in peak power (P max) (men 122 (25) W vs. women 74 (19) W, p &lt; 0.001), maximum oxygen consumption (VO2 max; men 19.45 (3.60) ml/kg/min vs. women 16.00 (3.35) ml/kg/min, p &lt; 0.001) and exercise test time (men 658 (150) s vs. women 363 (115) s, p &lt; 0.001). During the training both genders increased training intensity (men: +34 (12) W and women: +25 (9) W, both p &lt; 0.001) and target heart rate (men: +10 (5, 19) bpm and women: +10 (5, 20) bpm, both p &lt; 0.001), whereas training intensity was increased more in men than women (+9 W, p = 0.003). Exercise training led to improvement in P max (men: +15 (20) W, p &lt; 0.001, women: +14 (12) W, p &lt; 0.001), VO2 max (men: +1.87 (2.52) ml/kg/min, p &lt; 0.001, women: +2.47 (2.05) ml/kg/min, p &lt; 0.001) and exercise test time (men: +99 (134) s, p &lt; 0.001, women +95 (90) s, p &lt; 0.001). In addition, after adjusting for baseline values there were no sex differences in post training P max, VO2 max and exercise test time. Conclusions CR improved the exercise performance similarly in men and women, thus, more women should be encouraged to enrol into CR programmes. Still, larger and adequately powered randomised studies are warranted to further elucidate this issue.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e4118 ◽  
Author(s):  
Isabela Coelho Marocolo ◽  
Gustavo Ribeiro da Mota ◽  
André Monteiro Londe ◽  
Stephen D. Patterson ◽  
Octávio Barbosa Neto ◽  
...  

This study evaluated the acute effect of ischemic preconditioning (IPC) on a high-intensity intermittent exercise performance and physiological indicators in amateur soccer players. Thirteen players (21.5 ± 2 yrs) attended three trials separated by 3–5 days in a counterbalanced randomized cross-over design: IPC (4 × 5-min occlusion 220 mmHg/reperfusion 0 mmHg) in each thigh; SHAM (similar to the IPC protocol but “occlusion” at 20 mmHg) and control (seated during the same time of IPC). After 6-min of each trial (IPC, SHAM or control), the players performed the YoYo Intermittent Endurance Test level 2 (YoYoIE2). The distance covered in the YoYoIE2 (IPC 867 ± 205 m; SHAM 873 ± 212 m; control 921 ± 206 m) was not different among trials (p = 0.10), furthermore, lactate concentration and rate of perceived exertion did not differ (P > 0.05) among protocols. There were also no significant differences in either mean heart rate (HR) or peak HR (p > 0.05) for both IPC and SHAM compared to control. Therefore, we conclude that acute IPC does not influence high-intensity intermittent exercise performance in amateur soccer players and that rate of perceived exertion, heart rate and lactate do not differ between the intervention IPC, SHAM and control.


2013 ◽  
Vol 8 (2) ◽  
pp. 157-164 ◽  
Author(s):  
Mark Waldron ◽  
Jamie Highton ◽  
Matthew Daniels ◽  
Craig Twist

Purpose:This study aimed to quantify changes in heart rate (HR) and movement speeds in interchanged and whole-match players during 35 elite rugby league performances.Methods:Performances were separated into whole match, interchange bout 1, and interchange bout 2 and further subdivided into match quartiles. Mean percentages of peak HR (%HRpeak) and total and high-intensity running (> 14 km/h) meters per minute (m/min) were recorded.Results:For whole-match players, a decline in high-intensity m/min and %HRpeak was observed between successive quartiles (P < .05). High-intensity m/min during interchange 1 also progressively declined, although initial m/min was higher than whole match (24.2 ± 7.9 m/min vs 18.3 ± 4.7 m/min, P = .018), and %HRpeak did not change over match quartiles (P > .05). During interchange 2, there was a decline in high-intensity m/min from quartile 1 to quartile 3 (18 ± 4.1 vs 13.4 ± 5 m/min, P = .048) before increasing in quartile 4. Quartiles 1 and 2 also showed an increase in %HRpeak (85.2 ± 6.5 vs 87.3 ± 4.2%, P = .022).Conclusions:Replacement players adopted a high initial intensity in their first match quartile before a severe decline thereafter. However, in a second bout, lower exercise intensity at the outset enabled a higher physiological exertion for later periods. These findings inform interchange strategy and conditioning for coaches while also providing preliminary evidence of pacing in team sport.


2021 ◽  
Vol 13 (16) ◽  
pp. 8769
Author(s):  
Yue Zhang ◽  
Andi Liang ◽  
Jing Song ◽  
Yan Zhang ◽  
Xiaodan Niu ◽  
...  

Performing high-intensity exercise (HIE) in the morning under sleep deprivation may harm the health benefits related to sufficient sleep and HIE. Therefore, the aim of this study was to explore the effects of acute-partial sleep deprivation on HIE performance and cardiac autonomic activity by monitoring heart rate variability (HRV) indices. Twenty-nine healthy male adolescents in college were recruited to perform a one-time HIE session on the treadmill (Bruce protocol) after ≥7 h of normal control sleep (control) and after ≤4 h of acute-partial sleep deprivation (SD). At the beginning of control and SD periods and after exercising under the two sleep conditions, heart rate (HR), standard deviation of normal to normal (SDNN), square root of the mean squared differences of successive NN intervals (RMSSD), normalized low frequency power (LFn), normalized high frequency power (HFn), number of pairs adjacent NN intervals differing by ≥50 ms in the entire recording count divided by the total number of all NN intervals (pNN50), and short axis and long axis value in Poincaré plot (SD1 and SD2) were measured at rest in an upright sitting position. The participants slept 7.63 ± 0.52 and 3.78 ± 0.69 h during control and SD periods, respectively (p < 0.001). Compared with the control participants, those suffering sleep deprivation experienced a significant decrease in exercise duration, RMSSD, HFn, SD1, and pNN50 as well as a significant increase in maximum heart rate during exercise (p < 0.05). SDNN, RMSSD, HFn, SD1, and pNN50 decreased significantly after exercise (p < 0.05 and 0.01 and 0.001, respectively). In summary, acute-partial sleep deprivation affected aerobic exercise performance the next morning and led to decreased cardiac vagus activity and cardiac autonomic dysfunction.


2010 ◽  
Vol 5 (1) ◽  
pp. 64-74 ◽  
Author(s):  
Simon P. Roberts ◽  
Keith A. Stokes ◽  
Lee Weston ◽  
Grant Trewartha

Purpose:This study presents an exercise protocol utilizing movement patterns specific to rugby union forward and assesses the reproducibility of scores from this test.Methods:After habituation, eight participants (mean ± SD: age = 21 ± 3 y, height = 180 ± 4 cm, body mass = 83.9 ± 3.9 kg) performed the Bath University Rugby Shuttle Test (BURST) on two occasions, 1 wk apart. The protocol comprised 16 × 315-s cycles (4 × 21-min blocks) of 20-m shuttles of walking and cruising with 10-m jogs, with simulated scrummaging, rucking, or mauling exercises and standing rests. In the last minute of every 315-s cycle, a timed Performance Test was carried out, involving carrying a tackle bag and an agility sprint with a ball, followed by a 25-s recovery and a 15-m sprint.Results:Participants traveled 7078 m, spending 79.8 and 20.2% of time in low- and high-intensity activity, respectively. The coefficients of variation (CV) between trials 1 and 2 for mean time on the Performance Test (17.78 ± 0.71 vs 17.58 ± 0.79 s) and 15-m sprint (2.69 ± 0.15 vs 2.69 ± 0.15 s) were 1.3 and 0.9%, respectively. There was a CV of 2.2% between trials 1 and 2 for mean heart rate (160 ± 5 vs 158 ± 5 beats⋅min−1) and 14.4% for blood lactate (4.41 ± 1.22 vs 4.68 ± 1.68 mmol⋅L−1).Conclusion:Results suggest that measures of rugby union-specifc high-intensity exercise performed during the BURST were reproducible over two trials in habituated participants.


Sign in / Sign up

Export Citation Format

Share Document