The Effect of Postexercise Milk Protein Intake on Rehydration of Children

2016 ◽  
Vol 28 (2) ◽  
pp. 286-295 ◽  
Author(s):  
Kimberly Volterman ◽  
Daniel Moore ◽  
Joyce Obeid ◽  
Elizabeth A. Offord ◽  
Brian W. Timmons

Purpose:In adults, rehydration after exercise in the heat can be enhanced with a protein-containing beverage; however, whether this applies to children remains unknown. This study examined the effect of milk protein intake on postexercise rehydration in children.Method:Fifteen children (10–12 years) performed three exercise trials in the heat (34.4 ± 0.2 °C, 47.9 ± 1.1% relative humidity). In a randomized, counterbalanced crossover design, participants consumed iso-caloric and electrolyte-matched beverages containing 0 g (CONT), 0.76 g (Lo-PRO) or 1.5 g (Hi-PRO) of milk protein/100 mL in a volume equal to 150% of their body mass (BM) loss during exercise. BM was then assessed over 4 h of recovery.Results:Fluid balance demonstrated a significant condition × time interaction (p = .012) throughout recovery; Hi-PRO was less negative than CONT at 2 hr (p = .01) and tended to be less negative at 3 h (p = .07). Compared with CONT, beverage retention was enhanced by Hi-PRO at 2 h (p < .05).Conclusion:A postexercise beverage containing milk protein can favorably affect fluid retention in children. Further research is needed to determine the optimal volume and composition of a rehydration beverage for complete restoration of fluid balance.

2014 ◽  
Vol 39 (10) ◽  
pp. 1167-1174 ◽  
Author(s):  
Alexandra Pérez-Idárraga ◽  
Luis Fernando Aragón-Vargas

Fluid retention, thirst quenching, tolerance, and palatability of different drinks were assessed. On 4 different days, 12 healthy, physically active volunteers (24.4 ± 3.2 years old, 74.75 ± 11.36 kg body mass (mean ± S.D)), were dehydrated to 2.10% ± 0.24% body mass by exercising in an environmental chamber (32.0 ± 0.4 °C dry bulb, 53.8 ± 5.2% relative humidity). Each day they drank 1 of 4 beverages in random order: fresh coconut water (FCW), bottled water (W), sports drink (SD), or potassium-rich drink (NEW); volume was 120% of weight loss. Urine was collected and perceptions self-reported for 3 h. Urine output was higher (p < 0.05) for W (894 ± 178 mL) than SD (605 ± 297 mL) and NEW (599 ± 254 mL). FCW (686 ± 250 mL) was not different from any other drink (p > 0.05). Fluid retention was higher for SD than W (68.2% ± 13.0% vs. 51.3% ± 12.6%, p = 0.013), but not for FCW and NEW (62.5% ± 15.4% and 65.9% ± 15.4%, p > 0.05). All beverages were palatable and well tolerated; none maintained a positive net fluid balance after 3 h, but deficit was greater in W versus SD (p = 0.001). FCW scored higher for sweetness (p = 0.03). Thirst increased immediately after exercise but returned to baseline after drinking a small volume (p < 0.0005). In conclusion, additional potassium in FCW and NEW did not result in additional rehydration benefits over those already found in a conventional sports drink with sodium.


Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2933
Author(s):  
Mindy Millard-Stafford ◽  
Teresa K. Snow ◽  
Michael L. Jones ◽  
HyunGyu Suh

The beverage hydration index (BHI) facilitates a comparison of relative hydration properties of beverages using water as the standard. The additive effects of electrolytes, carbohydrate, and protein on rehydration were assessed using BHI. Nineteen healthy young adults completed four test sessions in randomized order: deionized water (W), electrolytes only (E), carbohydrate-electrolytes (C + E), and 2 g/L dipeptide (alanyl-glutamine)-electrolytes (AG + E). One liter of beverage was consumed, after which urine and body mass were obtained every 60 min through 240 min. Compared to W, BHI was higher (p = 0.007) for C + E (1.15 ± 0.17) after 120 min and for AG + E (p = 0.021) at 240 min (1.15 ± 0.20). BHI did not differ (p > 0.05) among E, C + E, or AG + E; however, E contributed the greatest absolute net effect (>12%) on BHI relative to W. Net fluid balance was lower for W (p = 0.048) compared to C + E and AG + E after 120 min. AG + E and E elicited higher (p < 0.001) overall urine osmolality vs. W. W also elicited greater reports of stomach bloating (p = 0.02) compared to AG + E and C + E. The addition of electrolytes alone (in the range of sports drinks) did not consistently improve BHI versus water; however, the combination with carbohydrate or dipeptides increased fluid retention, although this occurred earlier for the sports drink than the dipeptide beverage. Electrolyte content appears to make the largest contribution in hydration properties of beverages for young adults when consumed at rest.


2010 ◽  
Vol 105 (3) ◽  
pp. 393-399 ◽  
Author(s):  
Lewis J. James ◽  
David Clayton ◽  
Gethin H. Evans

The present study examined the effects of milk protein on rehydration after exercise in the heat, via the comparison of energy- and electrolyte content-matched carbohydrate and carbohydrate–milk protein solutions. Eight male subjects lost 1·9 (sd 0·2) % of their body mass by intermittent exercise in the heat and rehydrated with 150 % of their body mass loss with either a 65 g/l carbohydrate solution (trial C) or a 40 g/l carbohydrate, 25 g/l milk protein solution (trial CP). Urine samples were collected before and after exercise and for 4 h after rehydration. Total cumulative urine output after rehydration was greater for trial C (1212 (sd 310) ml) than for trial CP (931 (sd 254) ml) (P < 0·05), and total fluid retention over the study was greater after ingestion of drink CP (55 (sd 12) %) than that after ingestion of drink C (43 (sd 15) %) (P < 0·05). At the end of the study period, whole body net fluid balance (P < 0·05) was less negative for trial CP ( − 0·26 (sd 0·27) litres) than for trial C ( − 0·52 (sd 0·30) litres), and although net negative for both the trials, it was only significantly negative after ingestion of drink C (P < 0·05). The results of the present study suggest that when matched for energy density and fat content, as well as for Na and K concentration, and when ingested after exercise-induced dehydration, a carbohydrate–milk protein solution is better retained than a carbohydrate solution. These results suggest that gram-for-gram, milk protein is more effective at augmenting fluid retention than carbohydrate.


2014 ◽  
Vol 24 (4) ◽  
pp. 414-424 ◽  
Author(s):  
Iñigo Mujika ◽  
Trent Stellingwerff ◽  
Kevin Tipton

The adaptive response to training is determined by the combination of the intensity, volume, and frequency of the training. Various periodized approaches to training are used by aquatic sports athletes to achieve performance peaks. Nutritional support to optimize training adaptations should take periodization into consideration; that is, nutrition should also be periodized to optimally support training and facilitate adaptations. Moreover, other aspects of training (e.g., overload training, tapering and detraining) should be considered when making nutrition recommendations for aquatic athletes. There is evidence, albeit not in aquatic sports, that restricting carbohydrate availability may enhance some training adaptations. More research needs to be performed, particularly in aquatic sports, to determine the optimal strategy for periodizing carbohydrate intake to optimize adaptations. Protein nutrition is an important consideration for optimal training adaptations. Factors other than the total amount of daily protein intake should be considered. For instance, the type of protein, timing and pattern of protein intake and the amount of protein ingested at any one time influence the metabolic response to protein ingestion. Body mass and composition are important for aquatic sport athletes in relation to power-to-mass and for aesthetic reasons. Protein may be particularly important for athletes desiring to maintain muscle while losing body mass. Nutritional supplements, such as b-alanine and sodium bicarbonate, may have particular usefulness for aquatic athletes’ training adaptation.


Nutrients ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 2031
Author(s):  
Neda S. Akhavan ◽  
Shirin Pourafshar ◽  
Sarah A. Johnson ◽  
Elizabeth M. Foley ◽  
Kelli S. George ◽  
...  

Type 2 diabetes (T2D) is a major contributor to morbidity and mortality largely due to increased cardiovascular disease risk. This study examined the relationships among protein consumption and sources on glycemic control and cardiovascular health in individuals with prediabetes and T2D. Sixty-two overweight or obese participants with prediabetes or T2D, aged 45–75 years were stratified into the following three groups based on protein intake: <0.8 g (gram)/kg (kilogram) body weight (bw), ≥0.8 but <1.0 g/kg bw, and ≥1.0 g/kg bw as below, meeting, and above the recommended levels of protein intake, respectively. Body mass, body mass index (BMI), hip circumference (HC), waist circumference (WC), lean mass, and fat mass (FM) were significantly higher in participants who consumed below the recommended level of protein intake as compared with other groups. Higher animal protein intake was associated with greater insulin secretion and lower triglycerides (TG). Total, low-density, and high-density cholesterol were significantly higher in participants who met the recommended protein intake as compared with the other groups. These data suggest that high protein consumption is associated with lower BMI, HC, WC, and FM, and can improve insulin resistance without affecting lipid profiles in this population. Furthermore, higher intake of animal protein can improve β-cell function and lower plasma TG.


1997 ◽  
Vol 51 (2) ◽  
pp. 107-115 ◽  
Author(s):  
SC Child ◽  
MJ Soares ◽  
M Reid ◽  
C Persaud ◽  
T Forrester ◽  
...  

2020 ◽  
Vol 185 (9-10) ◽  
pp. e1671-e1678
Author(s):  
Jeremy A Ross ◽  
D Travis Thomas ◽  
Joshua D Winters ◽  
Scott D Royer ◽  
Christopher J Halagarda ◽  
...  

ABSTRACT Introduction Kinetic military units operate in austere training environments and deprivation not commonly experienced by competitive athletes. Nutritional strategies to protect against decrements in performance and potential injury risk may differ for these two groups. A cross sectional analysis was conducted to determine energy and macronutrient characteristics associated with performance metrics. Materials and Methods 78 male subjects (age: 28.4 ± 6.0 years, height: 178.3 ± 6.7 cm, mass: 84.3 ± 9.4 kg, 8.5 ± 5.8 years of service) assigned to Marine Corps Forces Special Operations Command completed a 1-day performance assessment. Body mass, lean body mass, fat mass (FM), aerobic capacity (VO2max), lactate inflection point (LT), anaerobic power, anaerobic capacity, knee flexion strength, knee extension strength, peak knee flexion strength, and peak knee extension strength outcome values were recorded. Dietary intake was collected using automated self-administered 24-hour dietary recall (ASA24). Performance assessment scores were compared with macronutrient intake and controlled for energy intake using analysis of covariance. Results Differences in knee flexion strength, knee extension strength, peak knee flexion strength, and peak knee extension strength were significant across low (LPRO), medium (MPRO), and high (HPRO) protein intake groups (p &lt; 0.05) with LPRO performance metrics significantly lower than both MPRO and HPRO and MPRO significantly lower than HPRO. FM was significantly higher in LPRO than MPRO or HPRO (p &lt; 0.05). Low carbohydrate intake (LCHO) was associated with greater body mass and FM compared with high (HCHO) (p &lt; 0.05). There was no association between fat intake and any variable. Conclusions Increases in protein intake may have beneficial performance effects independent of total energy intake, while moderate increases in carbohydrate intake may not be sufficient to enhance physical performance in a special operations population.


2020 ◽  
Vol 79 (1) ◽  
pp. 66-75
Author(s):  
Ryoichi Tagawa ◽  
Daiki Watanabe ◽  
Kyoko Ito ◽  
Keisuke Ueda ◽  
Kyosuke Nakayama ◽  
...  

Abstract Context Lean body mass is essential for health, yet consensus regarding the effectiveness of protein interventions in increasing lean body mass is lacking. Objective The aim of this systematic review was to evaluate the dose–response relationship of the effects of protein intake on lean body mass. Data Sources The PubMed and Ichushi-Web databases were searched electronically, and reference lists of the literature included here and in other meta-analyses were searched manually. Study Selection Randomized controlled trials evaluating the effects of protein intake on lean body mass were included. Data Extraction Two authors independently screened the abstracts; 5 reviewed the full texts. Results A total of 5402 study participants from 105 articles were included. In the multivariate spline model, the mean increase in lean body mass associated with an increase in protein intake of 0.1 g/kg of body weight per day was 0.39 kg (95%CI, 0.36–0.41) and 0.12 kg (95%CI, 0.11–0.14) below and above the total protein intake of 1.3 g/kg/d, respectively. Conclusions These findings suggest that slightly increasing current protein intake for several months by 0.1 g/kg/d in a dose-dependent manner over a range of doses from 0.5 to 3.5 g/kg/d may increase or maintain lean body mass. Systematic Review Registration UMIN registration number UMIN000039285.


2002 ◽  
Vol 282 (1) ◽  
pp. E95-E106 ◽  
Author(s):  
D. Enette Larson-Meyer ◽  
Bradley R. Newcomer ◽  
Gary R. Hunter

Using a randomly assigned crossover design, we evaluated the change in intramyocellular lipid stores (IMCL) from baseline after a 2-h treadmill run [67% of maximal oxygen uptake (V˙o 2 max)] and the recovery of IMCL in response to a postexercise very low-fat (10% of energy, LFAT) or moderate-fat (35% of energy, MFAT) recovery diet in seven female runners. IMCL was measured in soleus muscle by use of water-suppressed1H-NMR spectroscopic imaging before (baseline), after, and ∼22 h and 70 h after the run. IMCL fell by ∼25% ( P < 0.05) during the endurance run and was dependent on dietary fat content for postexercise recovery ( P = 0.038, diet × time interaction). Consumption of the MFAT recovery diet allowed IMCL stores to return to baseline by 22 h and to overshoot (vs. baseline) by 70 h postexercise. In contrast, consumption of the LFAT recovery diet did not allow IMCL stores to return to baseline even by 70 h after the endurance run ( P < 0.01 at 70 h). These results suggest that a certain quantity of dietary fat is required to replenish IMCL after endurance running.


1988 ◽  
Vol 64 (1) ◽  
pp. 187-193 ◽  
Author(s):  
M. A. Tarnopolsky ◽  
J. D. MacDougall ◽  
S. A. Atkinson

The present study examined the effects of training status (endurance exercise or body building) on nitrogen balance, body composition, and urea excretion during periods of habitual and altered protein intakes. Experiments were performed on six elite bodybuilders, six elite endurance athletes, and six sedentary controls during a 10-day period of normal protein intake followed by a 10-day period of altered protein intake. The nitrogen balance data revealed that bodybuilders required 1.12 times and endurance athletes required 1.67 times more daily protein than sedentary controls. Lean body mass (density) was maintained in bodybuilders consuming 1.05 g protein.kg-1.day-1. Endurance athletes excreted more total daily urea than either bodybuilders or controls. We conclude that bodybuilders during habitual training require a daily protein intake only slightly greater than that for sedentary individuals in the maintenance of lean body mass and that endurance athletes require daily protein intakes greater than either bodybuilders or sedentary individuals to meet the needs of protein catabolism during exercise.


Sign in / Sign up

Export Citation Format

Share Document