scholarly journals Trait-mediated trophic cascade creates enemy-free space for nesting hummingbirds

2015 ◽  
Vol 1 (8) ◽  
pp. e1500310 ◽  
Author(s):  
Harold F. Greeney ◽  
M. Rocio Meneses ◽  
Chris E. Hamilton ◽  
Eli Lichter-Marck ◽  
R. William Mannan ◽  
...  

The indirect effects of predators on nonadjacent trophic levels, mediated through traits of intervening species, are collectively known as trait-mediated trophic cascades. Although birds are important predators in terrestrial ecosystems, clear examples of trait-mediated indirect effects involving bird predators have almost never been documented. Such indirect effects are important for structuring ecological communities and are likely to be negatively impacted by habitat fragmentation, climate change, and other factors that reduce abundance of top predators. We demonstrate that hummingbirds in Arizona realize increased breeding success when nesting in association with hawks. An enemy-free nesting space is created when jays, an important source of mortality for hummingbird nests, alter their foraging behavior in the presence of their hawk predators.

Author(s):  
Brian J. Wilsey

Top predators have effects that can ‘cascade down’ on lower trophic levels. Because of this cascading effect, it matters how many trophic levels are present. Predators are either ‘sit and wait’ or ‘active’. Wolves are top predators in temperate grasslands and can alter species composition of smaller-sized predators, prey, and woody and herbaceous plant species, either through direct effects or indirect effects (‘Ecology of Fear’). In human derived grasslands, invertebrate predators fill a similar ecological role as wolves. Migrating populations of herbivores tend to be more limited by food than non-migratory populations. The phenology and synchrony of births vary among prey species in a way that is consistent with an adaptation to predation. Precocious species have highly synchronous birth dates to satiate predators. Non-precocious species (‘hiders’) have asynchronous births. Results from studies that manipulate both predators and food support the hypothesis that bottom-up and top-down effects interact.


2011 ◽  
Vol 7 (5) ◽  
pp. 702-705 ◽  
Author(s):  
C. Luczak ◽  
G. Beaugrand ◽  
M. Jaffré ◽  
S. Lenoir

A recent study showed that a critically endangered migratory predator species, the Balearic shearwater Puffinus mauretanicus , rapidly expanded northwards in northeast Atlantic waters after the mid-1990s. As a significant positive correlation was found between the long-term changes in the abundance of this seabird and sea temperature around the British Isles, it was hypothesized that the link between the biogeographic shift and temperature occurred through the food web. Here, we test this conjecture and reveal concomitant changes in a regional index of sea temperature, plankton (total calanoid copepod), fish prey (anchovy and sardine) and the Balearic shearwater for the period 1980–2003. All three trophic levels exhibit a significant shift detected between 1994 and 1996. Our findings therefore support the assertion of both a direct and an indirect effect of climate change on the spatial distribution of post-breeding Balearic shearwater through a trophic cascade.


2017 ◽  
Vol 284 (1867) ◽  
pp. 20171772 ◽  
Author(s):  
Lai Zhang ◽  
Daisuke Takahashi ◽  
Martin Hartvig ◽  
Ken H. Andersen

Climate change affects ecological communities through its impact on the physiological performance of individuals. However, the population dynamic of species well inside their thermal niche is also determined by competitors, prey and predators, in addition to being influenced by temperature changes. We use a trait-based food-web model to examine how the interplay between the direct physiological effects from temperature and the indirect effects due to changing interactions between populations shapes the ecological consequences of climate change for populations and for entire communities. Our simulations illustrate how isolated communities deteriorate as populations go extinct when the environment moves outside the species' thermal niches. High-trophic-level species are most vulnerable, while the ecosystem function of lower trophic levels is less impacted. Open communities can compensate for the loss of ecosystem function by invasions of new species. Individual populations show complex responses largely uncorrelated with the direct impact of temperature change on physiology. Such complex responses are particularly evident during extinction and invasion events of other species, where climatically well-adapted species may be brought to extinction by the changed food-web topology. Our results highlight that the impact of climate change on specific populations is largely unpredictable, and apparently well-adapted species may be severely impacted.


2021 ◽  
Author(s):  
Chase J. Rakowski ◽  
Mathew A. Leibold

AbstractTrophic cascades, or indirect effects of predators on non-adjacent lower trophic levels, are thought to pervade diverse ecosystems, though they tend to be stronger in aquatic ecosystems. Most research on freshwater trophic cascades focused on temperate lakes where Daphnia tend to dominate the zooplankton community, and these studies identified that Daphnia plays a key role in facilitating trophic cascades by linking fish to algae with strong food web interactions. However, Daphnia are rare or absent in most tropical and subtropical lowland freshwaters, and many invertebrate predators have received little attention in food web research despite being common and widespread. Therefore, we aimed to test whether trophic cascades are possible in small warmwater ponds where small invertebrates are the top predators and Daphnia are absent. We collected naturally occurring plankton communities from small fishless water bodies in central Texas and propagated them in replicate pond mesocosms. We removed zooplankton from some mesocosms, left the plankton community intact in others, and added one of two densities of the predaceous insect Neoplea striola to others. Following an incubation period we then compared biomasses of plankton groups to assess food web effects between the trophic levels including whether Neoplea caused a trophic cascade by reducing zooplankton. The zooplankton community became dominated by copepods which prefer large phytoplankton and exhibit a fast escape response. Perhaps due to these qualities of the copepods and perhaps due to slow consumption rates by Neoplea on key grazers, no food web effects were found other than zooplankton marginally reducing large phytoplankton. More research is needed to understand the behavior and ecology of Neoplea, but trophic cascades may generally be weak or absent in subtropical and tropical lowland freshwaters where Daphnia is rare.


Author(s):  
Markku Viitasalo

Climate change influences the Baltic Sea ecosystem via its effects on oceanography and biogeochemistry. Sea surface temperature has been projected to increase by 2 to 4 °C until 2100 due to global warming; the changes will be more significant in the northern areas and less so in the south. The warming up will also diminish the annual sea ice cover by 57% to 71%, and ice season will be one to three months shorter than in the early 21st century, depending on latitude. A significant decrease in sea surface salinity has been projected because of an increase in rainfall and decrease of saline inflows into the Baltic Sea. The increasing surface flow has, in turn, been projected to increase leaching of nutrients from the soil to the watershed and eventually into the Baltic Sea. Also, acidification of the seawater and sea-level rise have been predicted. Increasing seawater temperature speeds up metabolic processes and increases growth rates of many secondary producers. Species associated with sea ice, from salt brine microbes to seals, will suffer. Due to the specific salinity tolerances, species’ geographical ranges may shift by tens or hundreds of kilometres with decreasing salinity. A decrease in pH will slow down calcification of bivalve shells, and higher temperatures also alleviate establishment of non-indigenous species originating from more southern sea areas. Many uncertainties still remain in predicting the couplings between atmosphere, oceanography and ecosystem. Especially projections of many oceanographic parameters, such as wind speeds and directions, the mean salinity level, and density stratification, are still ambiguous. Also, the effects of simultaneous changes in multiple environmental factors on species with variable preferences to temperature, salinity, and nutrient conditions are difficult to project. There is, however, enough evidence to claim that due to increasing runoff of nutrients from land and warming up of water, primary production and sedimentation of organic matter will increase; this will probably enhance anoxia and release of phosphorus from sediments. Such changes may keep the Baltic Sea in an eutrophicated state for a long time, unless strong measures to decrease nutrient runoff from land are taken. Changes in the pelagic and benthic communities are anticipated. Benthic communities will change from marine to relatively more euryhaline communities and will suffer from hypoxic events. The projected temperature increase and salinity decline will contribute to maintain the pelagic ecosystem of the Central Baltic and the Gulf of Finland in a state dominated by cyanobacteria, flagellates, small-sized zooplankton and sprat, instead of diatoms, large marine copepods, herring, and cod. Effects vary from area to area, however. In particular the Bothnian Sea, where hypoxia is less common and rivers carry a lot of dissolved organic carbon, primary production will probably not increase as much as in the other basins. The coupled oceanography-biogeochemistry ecosystem models have greatly advanced our understanding of the effects of climate change on marine ecosystems. Also, studies on climate associated “regime shifts” and cascading effects from top predators to plankton have been fundamental for understanding of the response of the Baltic Sea ecosystem to anthropogenic and climatic stress. In the future, modeling efforts should be focusing on coupling of biogeochemical processes and lower trophic levels to the top predators. Also, fine resolution species distribution models should be developed and combined with 3-D modelling, to describe how the species and communities are responding to climate-induced changes in environmental variables.


2021 ◽  
Vol 8 ◽  
Author(s):  
Kuo-Wei Lan ◽  
Yan-Lun Wu ◽  
Lu-Chi Chen ◽  
Muhamad Naimullah ◽  
Tzu-Hsiang Lin

How top predators behave and are distributed depend on the conditions in their marine ecosystem through bottom−up forcing; this is because where and when these predators can feed and spawn are limited and change often. This study investigated how the catch rates of immature and mature cohorts of bigeye tuna (BET) varied across space and time; this was achieved by analyzing data on the Taiwanese longline fishery in the western and central Pacific Ocean (WCPO). We also conducted a case study on the time series patterns of BET cohorts to explore the processes that underlie the bottom-up control of the pelagic ecosystem that are influenced by decadal climate events. Wavelet analysis results revealed crucial synchronous shifts in the connection between the pelagic ecosystems at low trophic levels in relation to the immature BET cohort. Many variables exhibited decreasing trends after 2004–2005, and we followed the Pacific Decadal Oscillation (PDO) as a bottom-up control regulator. The results indicated that low recruitment into the mature cohort occurs 3 years after a decrease in the immature cohort’s food stocks, as indicated by a 3-year lag in our results. This finding demonstrated that, by exploring the connection between low-trophic-level species and top predators at various life stages, we can better understand how climate change affects the distribution and abundance of predator fish.


2019 ◽  
Author(s):  
Arnaud Sentis ◽  
Raphaël Bertram ◽  
Nathalie Dardenne ◽  
Jean-Christophe Simon ◽  
Alexandra Magro ◽  
...  

AbstractTrophic cascades—the indirect effect of predators on non-adjacent lower trophic levels—are important drivers of the structure and dynamics of ecological communities. However, the influence of intraspecific trait variation on the strength of trophic cascade remains largely unexplored, which limits our understanding of the mechanisms underlying ecological networks. Here we experimentally investigated how intraspecific difference among herbivore lineages specialized on different host plants influences the strength of trophic cascade in a terrestrial tritrophic system. We found that the occurrence and strength of the trophic cascade are strongly influenced by herbivores’ lineage and host-plant specialization but are not associated with density-dependent effects mediated by the growth rate of herbivore populations. Our findings stress the importance of intraspecific heterogeneities and evolutionary specialization as drivers of the strength of trophic cascades and underline that intraspecific variation should not be overlooked to decipher the joint influence of evolutionary and ecological factors on the functioning of multi-trophic interactions.


2018 ◽  
Author(s):  
Tim Newbold ◽  
Derek P. Tittensor ◽  
Michael B. J. Harfoot ◽  
Jörn P. W. Scharlemann ◽  
Drew W. Purves

When perturbed ecosystems undergo rapid and non-linear changes, this can result in ‘regime shifts’ to an entirely different ecological state. The need to understand the extent, nature, magnitude and reversibility of these changes is urgent given the profound effects that humans are having on the natural world. It remains very challenging to empirically document non-linear changes and regime shifts within complex, real ecological communities, or even to demonstrate such shifts in simplified experimental systems. General ecosystem models, which simulate the dynamics of entire ecological communities based on a mechanistic representation of ecological processes, provide an alternative and novel way to project ecosystem changes across all scales and trophic levels and to forecast impact thresholds beyond which dramatic or irreversible changes may occur. We model non-linear changes in four terrestrial biomes subjected to human removal of plant biomass, such as occurs through agricultural land-use change. We find that irreversible and non-linear responses are predicted to be common where removal of vegetation exceeds 80% (a level that occurs across nearly 10% of the terrestrial surface), especially for organisms at higher trophic levels and in less productive ecosystems such as drylands. Very large, irreversible changes to the entire ecosystem structure are expected at levels of vegetation removal akin to those in the most intensively used real-world ecosystems. Our results suggest that the projected 21st century rapid increases in agricultural land conversion to feed an expanding human population, may lead to widespread trophic cascades and in some cases irreversible changes to the structure of ecological communities.


Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 174 ◽  
Author(s):  
Zachariah Gezon ◽  
Rebekah Lindborg ◽  
Anne Savage ◽  
Jaret Daniels

Climate change has caused many ecological changes around the world. Altered phenology is among the most commonly observed effects of climate change, and the list of species interactions affected by altered phenology is growing. Although many studies on altered phenology focus on single species or on pairwise species interactions, most ecological communities are comprised of numerous, ecologically similar species within trophic groups. Using a 12-year butterfly monitoring citizen science data set, we aimed to assess the degree to which butterfly communities may be changing over time. Specifically, we wanted to assess the degree to which phenological sensitivities to temperature could affect temporal overlap among species within communities, independent of changes in abundance, species richness, and evenness. We found that warming winter temperatures may be associated with some butterfly species making use of the coldest months of the year to fly as adults, thus changing temporal co-occurrence with other butterfly species. Our results suggest that changing temperatures could cause immediate restructuring of communities without requiring changes in overall abundance or diversity. Such changes could have fitness consequences for individuals within trophic levels by altering competition for resources, as well as indirect effects mediated by species interactions across trophic levels.


2001 ◽  
Vol 70 (1) ◽  
pp. 47-61 ◽  
Author(s):  
Robert Moss ◽  
James Oswald ◽  
David Baines

Sign in / Sign up

Export Citation Format

Share Document