scholarly journals Ultrafast nonlocal collective dynamics of Kane plasmon-polaritons in a narrow-gap semiconductor

2019 ◽  
Vol 5 (8) ◽  
pp. eaau9956 ◽  
Author(s):  
A. Charnukha ◽  
A. Sternbach ◽  
H. T. Stinson ◽  
R. Schlereth ◽  
C. Brüne ◽  
...  

The observation of ultrarelativistic fermions in condensed-matter systems has uncovered a cornucopia of novel phenomenology as well as a potential for effective ultrafast light engineering of new states of matter. While the nonequilibrium properties of two- and three-dimensional (2D and 3D) hexagonal crystals have been studied extensively, our understanding of the photoinduced dynamics in 3D single-valley ultrarelativistic materials is, unexpectedly, lacking. Here, we use ultrafast scanning near-field optical spectroscopy to access and control nonequilibrium large-momentum plasmon-polaritons in thin films of a prototypical narrow-bandgap semiconductor Hg0.81Cd0.19Te. We demonstrate that these collective excitations exhibit distinctly nonclassical scaling with electron density characteristic of the ultrarelativistic Kane regime and experience ultrafast initial relaxation followed by a long-lived highly coherent state. Our observation and ultrafast control of Kane plasmon-polaritons in a semiconducting material using light sources in the standard telecommunications fiber-optics window open a new avenue toward high-bandwidth coherent information processing in next-generation plasmonic circuits.

Nanoscale ◽  
2020 ◽  
Vol 12 (25) ◽  
pp. 13674-13679
Author(s):  
C. C. Li ◽  
P. Shi ◽  
L. P. Du ◽  
X. C. Yuan

An optical spin-resolved scanning imaging technique was proposed by which the normal to the interface spin component of surface plasmon polaritons can be mapped and the three-dimensional spin vector can be reconstructed with the experimental result.


Author(s):  
Sheenu Sachdeva ◽  
Dinesh

An optical fiber is an important communication channel as it proposes a high bandwidth and less attenuation, and can be easy challenging assistances such as huge-quality data transmission and others in computer networks. The basic optical transmission system consists of three basic elements which are fiber media (transmission channel), light sources as the input (covert electric signal into optic signal) and light detector as the output (convert optic signal into electric signal). FBG is the key component in optical communication system as, dispersion compensators, filters and flatteners gain. There is need to introduce mechanism that should be capable to provide data security in less time. More over there is need to introduce energy efficient mechanism that should be capable to reduce the size of packet during data transmission. There are several problems that are faced due to attenuation in fiber optics. There is need of repeater in order to regenerate the signals. Process working principle of proposed technique that is being used enhancement of security in steganography has been discussed with process flow and result. It states how brute force and timing attack are not applicable on proposed technique.


1993 ◽  
Vol 248 ◽  
pp. 315-361 ◽  
Author(s):  
Hyder S. Husain ◽  
Fazle Hussain

The dynamics of the preferred mode structure in the near field of an elliptic jet have been investigated using hot-wire measurements. A 2:1 aspect ratio jet with an initially turbulent boundary layer and a constant momentum thickness all around the nozzle exit perimeter was used for this study. Measurements were made in air at a Reynolds number ReDe (≡ UeDe/v) = 3.5 × 104. Controlled longitudinal excitation at the preferred mode frequency (StDe ≡ fDe/Ue = 0.4) induced periodic formation of structures, allowing phase-locked measurements with a local trigger hot wire. The dynamics of the organized structure are examined from educed fields of coherent vorticity and incoherent turbulence in the major and minor symmetry planes at five successive phases of evolution, and are also compared with corresponding data for a circular jet. Unlike in a circular jet, azimuthally fixed streamwise vortices (ribs) form without the aid of azimuthal forcing. The three-dimensional deformation of elliptic vortical structures and the rib formation mechanism have also been studied through direct numerical simulation. Differential self-induced motions due to non-uniform azimuthal curvature and the azimuthally fixed ribs produce greater mass entrainment in the elliptic jet than in a circular jet. The turbulence production mechanism, entrainment and mixing enhancement, and time-average measures and their modification by excitation are also discussed in terms of coherent structure dynamics and the rib-roll interaction. Various phase-dependent and time-average turbulence measures documented in this paper should serve as target data for validation of numerical simulations and turbulence modelling, and for design and control purposes in technological applications. Further details are given by Husain (1984).


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Philipp Rupp ◽  
Christian Burger ◽  
Nora G. Kling ◽  
Matthias Kübel ◽  
Sambit Mitra ◽  
...  

Abstract Nanoparticles offer unique properties as photocatalysts with large surface areas. Under irradiation with light, the associated near-fields can induce, enhance, and control molecular adsorbate reactions on the nanoscale. So far, however, there is no simple method available to spatially resolve the near-field induced reaction yield on the surface of nanoparticles. Here we close this gap by introducing reaction nanoscopy based on three-dimensional momentum-resolved photoionization. The technique is demonstrated for the spatially selective proton generation in few-cycle laser-induced dissociative ionization of ethanol and water on SiO2 nanoparticles, resolving a pronounced variation across the particle surface. The results are modeled and reproduced qualitatively by electrostatic and quasi-classical mean-field Mie Monte-Carlo (M3C) calculations. Reaction nanoscopy is suited for a wide range of isolated nanosystems and can provide spatially resolved ultrafast reaction dynamics on nanoparticles, clusters, and droplets.


2021 ◽  
Vol 11 (6) ◽  
pp. 2743-2761
Author(s):  
Caetano P. S. Andrade ◽  
J. Luis Saavedra ◽  
Andrzej Tunkiel ◽  
Dan Sui

AbstractDirectional drilling is a common and essential procedure of major extended reach drilling operations. With the development of directional drilling technologies, the percentage of recoverable oil production has increased. However, its challenges, like real-time bit steering, directional drilling tools selection and control, are main barriers leading to low drilling efficiency and high nonproductive time. The fact inspires this study. Our work aims to contribute to the better understanding of directional drilling, more specifically regarding rotary steerable system (RSS) technology. For instance, finding the solutions of the technological challenges involved in RSSs, such as bit steering control, bit position calculation and bit speed estimation, is the main considerations of our study. Classical definitions from fundamental physics including Newton’s third law, beam bending analysis, bit force analysis, rate of penetration (ROP) modeling are employed to estimate bit position and then conduct RSS control to steer the bit accordingly. The results are illustrated in case study with the consideration of the 2D and 3D wellbore scenarios.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kiyoshi Masuyama ◽  
Tomoaki Higo ◽  
Jong-Kook Lee ◽  
Ryohei Matsuura ◽  
Ian Jones ◽  
...  

AbstractIn contrast to hypertrophic cardiomyopathy, there has been reported no specific pattern of cardiomyocyte array in dilated cardiomyopathy (DCM), partially because lack of alignment assessment in a three-dimensional (3D) manner. Here we have established a novel method to evaluate cardiomyocyte alignment in 3D using intravital heart imaging and demonstrated homogeneous alignment in DCM mice. Whilst cardiomyocytes of control mice changed their alignment by every layer in 3D and position twistedly even in a single layer, termed myocyte twist, cardiomyocytes of DCM mice aligned homogeneously both in two-dimensional (2D) and in 3D and lost myocyte twist. Manipulation of cultured cardiomyocyte toward homogeneously aligned increased their contractility, suggesting that homogeneous alignment in DCM mice is due to a sort of alignment remodelling as a way to compensate cardiac dysfunction. Our findings provide the first intravital evidence of cardiomyocyte alignment and will bring new insights into understanding the mechanism of heart failure.


2021 ◽  
Vol 7 (3) ◽  
pp. 209-219
Author(s):  
Iris J Holzleitner ◽  
Alex L Jones ◽  
Kieran J O’Shea ◽  
Rachel Cassar ◽  
Vanessa Fasolt ◽  
...  

Abstract Objectives A large literature exists investigating the extent to which physical characteristics (e.g., strength, weight, and height) can be accurately assessed from face images. While most of these studies have employed two-dimensional (2D) face images as stimuli, some recent studies have used three-dimensional (3D) face images because they may contain cues not visible in 2D face images. As equipment required for 3D face images is considerably more expensive than that required for 2D face images, we here investigated how perceptual ratings of physical characteristics from 2D and 3D face images compare. Methods We tested whether 3D face images capture cues of strength, weight, and height better than 2D face images do by directly comparing the accuracy of strength, weight, and height ratings of 182 2D and 3D face images taken simultaneously. Strength, height and weight were rated by 66, 59 and 52 raters respectively, who viewed both 2D and 3D images. Results In line with previous studies, we found that weight and height can be judged somewhat accurately from faces; contrary to previous research, we found that people were relatively inaccurate at assessing strength. We found no evidence that physical characteristics could be judged more accurately from 3D than 2D images. Conclusion Our results suggest physical characteristics are perceived with similar accuracy from 2D and 3D face images. They also suggest that the substantial costs associated with collecting 3D face scans may not be justified for research on the accuracy of facial judgments of physical characteristics.


Sign in / Sign up

Export Citation Format

Share Document