scholarly journals CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy

2020 ◽  
Vol 6 (47) ◽  
pp. eabc9450 ◽  
Author(s):  
Daniel Rosenblum ◽  
Anna Gutkin ◽  
Ranit Kedmi ◽  
Srinivas Ramishetti ◽  
Nuphar Veiga ◽  
...  

Harnessing CRISPR-Cas9 technology for cancer therapeutics has been hampered by low editing efficiency in tumors and potential toxicity of existing delivery systems. Here, we describe a safe and efficient lipid nanoparticle (LNP) for the delivery of Cas9 mRNA and sgRNAs that use a novel amino-ionizable lipid. A single intracerebral injection of CRISPR-LNPs against PLK1 (sgPLK1-cLNPs) into aggressive orthotopic glioblastoma enabled up to ~70% gene editing in vivo, which caused tumor cell apoptosis, inhibited tumor growth by 50%, and improved survival by 30%. To reach disseminated tumors, cLNPs were also engineered for antibody-targeted delivery. Intraperitoneal injections of EGFR-targeted sgPLK1-cLNPs caused their selective uptake into disseminated ovarian tumors, enabled up to ~80% gene editing in vivo, inhibited tumor growth, and increased survival by 80%. The ability to disrupt gene expression in vivo in tumors opens new avenues for cancer treatment and research and potential applications for targeted gene editing of noncancerous tissues.

2019 ◽  
Vol 5 (4) ◽  
pp. eaav7199 ◽  
Author(s):  
Yongchun Pan ◽  
Jingjing Yang ◽  
Xiaowei Luan ◽  
Xinli Liu ◽  
Xueqing Li ◽  
...  

As an RNA-guided nuclease, CRISPR-Cas9 offers facile and promising solutions to mediate genome modification with respect to versatility and high precision. However, spatiotemporal manipulation of CRISPR-Cas9 delivery remains a daunting challenge for robust effectuation of gene editing both in vitro and in vivo. Here, we designed a near-infrared (NIR) light–responsive nanocarrier of CRISPR-Cas9 for cancer therapeutics based on upconversion nanoparticles (UCNPs). The UCNPs served as “nanotransducers” that can convert NIR light (980 nm) into local ultraviolet light for the cleavage of photosensitive molecules, thereby resulting in on-demand release of CRISPR-Cas9. In addition, by preparing a single guide RNA targeting a tumor gene (polo-like kinase-1), our strategies have successfully inhibited the proliferation of tumor cell via NIR light–activated gene editing both in vitro and in vivo. Overall, this exogenously controlled method presents enormous potential for targeted gene editing in deep tissues and treatment of a myriad of diseases.


2016 ◽  
Vol 24 (6) ◽  
pp. 1106-1116 ◽  
Author(s):  
Sorah Yoon ◽  
Kai-Wen Huang ◽  
Vikash Reebye ◽  
Paul Mintz ◽  
Yu-Wen Tien ◽  
...  

2013 ◽  
Vol 31 (15_suppl) ◽  
pp. e22143-e22143
Author(s):  
Elena V. Kurenova ◽  
Sartaj Singh Sanghera ◽  
Jianqun Liao ◽  
Michael Yemma ◽  
William G. Cance

e22143 Background: While the emerging data strongly suggest that FAK is an excellent target for developmental therapeutics of cancer, kinase inhibitors of FAK have shown crossreactivity with other protein kinases and toxicity in preclinical and clinical studies. It is known that FAK acts pleiotropically, as a kinase and as a scaffolding protein, and our goal is to explore targeting the scaffolding function of FAK to inhibit protein-protein interactions important for tumor progression. Previously, we have shown that FAK physically interacts with VEGFR3 and we identified small molecule inhibitor CFAK-C4 that targets this site of interaction. Both of these kinases are overexpressed in gastric cancers and were found to be independent poor prognostic factors. The prognosis of patients with gastric cancer remains unfavorable and molecular based treatments are necessary for a potential breakthrough in the therapy of this disease. We hypothesize that FAK-VEGFR3 interaction provides essential survival signals for gastric tumor growth and that simultaneous inhibition of these signals will inhibit tumor progression. Methods: Effects of CFAK-C4 on gastric cancer cell lines AGS and NCI-N87 were examined by MTT assay (viability), colony formation assay and Western blotting (phosphorylation, apoptosis). Subcutaneous mouse model was used to demonstrate effect of CFAK-C4 in vivo. Results: CFAK-C4 specifically blocked phosphorylation of VEGFR3 and FAK, directly inhibited cell viability (p<0.05), increased cell detachment and inhibited colony formation in a dose-dependent manner (range 1-100µM). CFAK-C4 (50mg/kg, IP) effectively caused tumor regression in vivo, when administered alone and its effects were synergistic (p<0.05) with chemotherapy. In vivo effects of C4 were confirmed by a decrease in tumor FAK and VEGFR3 phosphorylation, and disruption of their complexes. Conclusions: In this study we have shown that CFAK-C4 inhibits FAK-VEGFR3 signaling in gastric cancer cells and affects tumor growth. This result demonstrates that targeting the scaffolding function of FAK is a unique approach of highly-specific molecular-targeted therapy and can be used to develop oral-based cancer therapeutics.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Subhankar Panda ◽  
Nirmalya Pradhan ◽  
Soumya Chatterjee ◽  
Sudhir Morla ◽  
Abhishek Saha ◽  
...  

AbstractThe improvement of body’s own immune system is considered one of the safest approaches to fight against cancer and several other diseases. Excessive catabolism of the essential amino acid, L-tryptophan (L-Trp) assists the cancer cells to escape normal immune obliteration. The formation of disproportionate kynurenine and other downstream metabolites suppress the T cell functions. Blocking of this immunosuppressive mechanism is considered as a promising approach against cancer, neurological disorders, autoimmunity, and other immune-mediated diseases. Overexpression of indoleamine 2,3-dioxygenase 1 (IDO1) enzyme is directly related to the induction of immunosuppressive mechanisms and represents an important therapeutic target. Several classes of small molecule-based IDO1 inhibitors have been already reported, but only few compounds are currently being evaluated in various stages of clinical trials as adjuvants or in combination with chemo- and radiotherapies. In the quest for novel structural class(s) of IDO1 inhibitors, we developed a series of 4,5-disubstituted 1,2,3-triazole derivatives. The optimization of 4,5-disubstituted 1,2,3-triazole scaffold and comprehensive biochemical and biophysical studies led to the identification of compounds, 3i, 4i, and 4k as potent and selective inhibitors of IDO1 enzyme with IC50 values at a low nanomolar level. These potent compounds also showed strong IDO1 inhibitory activities in MDA-MB-231 cells with no/negligible level of cytotoxicity. The T cell activity studies revealed that controlled regulation of IDO1 enzyme activity in the presence of these potent compounds could induce immune response against breast cancer cells. The compounds also showed excellent in vivo antitumor efficacy (of tumor growth inhibition = 79–96%) in the female Swiss albino mice. As a consequence, this study describes the first example of 4,5-disubstituted 1,2,3-triazole based IDO1 inhibitors with potential applications for immunotherapeutic studies.


2021 ◽  
Author(s):  
Moataz Dowaidar

The genomic size, complexity, heritability, and diversity of human primary genetic compartments vary. Although the nuclear genome's huge size ensures that hundreds of reported monogenic diseases appear in a range of conditions, germline abnormalities in the mitochondrial and nuclear genomes often generate developmental issues. Accumulation of somatic mutations in the nuclear genome causes cancer, and somatic mutations in mitochondria may contribute to aging. More broadly, the microbial metagenome develops largely after birth, and is marked throughout their lifetimes by much more diversity and diversity among individuals. Mitochondrial sequencing, clinical exome and full-genome sequencing, and 16S and unbiased microbiological sequencing have all become more widely available because of developments in DNA sequencing next-generation.These technologies discover genetic defects that can be addressed with gene therapy. Modern aided techniques of reproduction, such as mitochondrial replacement therapy and preimplantation diagnosis, may address complete genomic compartments in bulk, such as mitochondrial and nuclear genomes. Additive somatic cell gene therapies started with the invention of viral vectors to infect human somatic cells that could be cultured ex vivo, such as T cells, and rapidly advanced to in vivo applications employing viral pseudotypes with specific tissue tropisms. CRISPR/Cas9 and other targeted gene editing approaches that fix the specific causative mutation or gene at its endogenous locus have recently expanded the possibility for more refined ex vivo and in vivo gene therapies.DNA sequencing costs have decreased during the past two decades, hurrying to identify genetic diseases. Targeted gene editing progress has now enabled the synthesis and testing of specific therapeutic reagents to address direct and accessible genetic abnormalities, repeating these diagnostic accomplishments. Generalized methods for delivering customizable gene editing reagents to the cell type and genomic compartment of interest in the specific genetic disease of a patient are one of the major outstanding challenges to wide-spread gene therapy. Aside from direct genetic disease repair, recent methods for rapidly identifying synthetic genetic circuits capable of improving cellular function in diseases such as cancer and autoimmune hold the promise of future gene therapy in modified somatic cells.Genetic diseases are becoming more readily diagnosed in all human genetic compartments, and the next generation of gene therapy platforms targeting each compartment are preparing to give flexible, tailored curative medicines. The Mitochondrial genome, nuclear genome, and microbial metagenome are the three genetic compartments present in humans. Gene therapies for each of these compartments come into three categories: whole genome replacement or selection, non-focused insertion of new genetic information to compensate for genetic errors, and direct gene editing to correct causative genetic disorders. The mitochondrial and nuclear genomes are determined at conception, save for somatic mutations and the adaptive immune receptor repertoire, and remain stable throughout life.


2016 ◽  
Vol 24 ◽  
pp. S217 ◽  
Author(s):  
Salma G. Morsy ◽  
Jason Tonne ◽  
Yaxi Zhu ◽  
Paul Belmonte ◽  
Yasuhiro Ikeda

2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Kimberly J. Ornell ◽  
Jeannine M. Coburn

AbstractDespite advances in cancer therapeutics, particularly in the area of immuno-oncology, successful treatment of neuroblastoma (NB) remains a challenge. NB is the most common cancer in infants under 1 year of age, and accounts for approximately 10% of all pediatric cancers. Currently, children with high-risk NB exhibit a survival rate of 40–50%. The heterogeneous nature of NB makes development of effective therapeutic strategies challenging. Many preclinical models attempt to mimic the tumor phenotype and tumor microenvironment. In vivo mouse models, in the form of genetic, syngeneic, and xenograft mice, are advantageous as they replicated the complex tumor-stroma interactions and represent the gold standard for preclinical therapeutic testing. Traditional in vitro models, while high throughput, exhibit many limitations. The emergence of new tissue engineered models has the potential to bridge the gap between in vitro and in vivo models for therapeutic testing. Therapeutics continue to evolve from traditional cytotoxic chemotherapies to biologically targeted therapies. These therapeutics act on both the tumor cells and other cells within the tumor microenvironment, making development of preclinical models that accurately reflect tumor heterogeneity more important than ever. In this review, we will discuss current in vitro and in vivo preclinical testing models, and their potential applications to therapeutic development.


2020 ◽  
Vol 26 (40) ◽  
pp. 5134-5151 ◽  
Author(s):  
Mehak Jindal ◽  
Manju Nagpal ◽  
Manjinder Singh ◽  
Geeta Aggarwal ◽  
Gitika Arora Dhingra

Background: Cancer is the world’s second-largest cause of death, with an estimated 9.6 million fatalities in 2018. Malignant tumour (cancer) is caused by a mixture of genetic modifications due to the environmental variables that tend to activate or inactivate different genes, ultimately resulting in neoplastic transformations. Cancer is a multi-stage process that results from the conversion of the ordinary cells to tumour cells and progresses from a pre-cancer lesion to abnormal growth. Methods: Chemotherapy inhibits the ability of the cells to divide rapidly in an abnormal manner, but this treatment simultaneously affects the entire cellular network in the human body leading to cytotoxic effects. In this review article, the same issue has been addressed by discussing various aspects of the newer class of drugs in cancer therapeutics, i.e., Gold Nanoparticles (AuNPs) from metal nanoparticle (NP) class. Results: Metal NPs are advantageous over conventional chemotherapy as the adverse drug reactions are lesser. Additionally, ease of drug delivery, targeting and gene silencing are salient features of this treatment. Functionalized ligand-targeting metal NPs provide better energy deposition control in tumour. AuNPs are promising agents in the field of cancer treatment and are comprehensively studied as contrast agents, carriers of medicinal products, radiosensitizers and photothermal agents. For the targeted delivery of chemotherapeutic agents, AuNPs are used and also tend to enhance tumour imaging in vivo for a variety of cancer types and diseased organs. Conclusion: The first part of the review focuses on various nano-carriers that are used for cancer therapy and deals with the progression of metal NPs in cancer therapy. The second part emphasizes the use of nanotechnology by considering the latest studies for diagnostic and therapeutic properties of AuNPs. AuNPs present the latest studies in the field of nanotechnology, which leads to the development of early-stage clinical trials. The next part of the review discusses the major features of five principal types of AuNPs: gold nanorods, gold nanoshells, gold nanospheres, gold nanocages, and gold nanostars that have their application in photothermal therapy (PTT).


Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 85
Author(s):  
Hojun Choi ◽  
Hwayoung Yim ◽  
Cheolhyoung Park ◽  
So-Hee Ahn ◽  
Yura Ahn ◽  
...  

Among extracellular vesicles, exosomes have gained great attention for their role as therapeutic vehicles for delivering various active pharmaceutical ingredients (APIs). Exosomes “armed” with anti-cancer therapeutics possess great potential for an efficient intracellular delivery of anti-cancer APIs and enhanced targetability to tumor cells. Various technologies are being developed to efficiently incorporate anti-cancer APIs such as genetic materials (miRNA, siRNA, mRNA), chemotherapeutics, and proteins into exosomes and to induce targeted delivery to tumor burden by exosomal surface modification. Exosomes can incorporate the desired therapeutic molecules via direct exogenous methods (e.g., electroporation and sonication) or indirect methods by modifying cells to produce “armed” exosomes. The targeted delivery of “armed” exosomes to tumor burden could be accomplished either by “passive” targeting using the natural tropism of exosomes or by “active” targeting via the surface engineering of exosomal membranes. Although anti-cancer exosome therapeutics demonstrated promising results in preclinical studies, success in clinical trials requires thorough validation in terms of chemistry, manufacturing, and control techniques. While exosomes possess multiple advantages over synthetic nanoparticles, challenges remain in increasing the loading efficiency of anti-cancer agents into exosomes, as well as establishing quantitative and qualitative analytical methods for monitoring the delivery of in vivo administered exosomes and exosome-incorporated anti-cancer agents to the tumor parenchyma.


Sign in / Sign up

Export Citation Format

Share Document