scholarly journals Skeletal muscle antagonizes antiviral CD8+ T cell exhaustion

2020 ◽  
Vol 6 (24) ◽  
pp. eaba3458 ◽  
Author(s):  
Jingxia Wu ◽  
Nina Weisshaar ◽  
Agnes Hotz-Wagenblatt ◽  
Alaa Madi ◽  
Sicong Ma ◽  
...  

CD8+ T cells become functionally impaired or “exhausted” in chronic infections, accompanied by unwanted body weight reduction and muscle mass loss. Whether muscle regulates T cell exhaustion remains incompletely understood. We report that mouse skeletal muscle increased interleukin (IL)–15 production during LCMV clone 13 chronic infection. Muscle-specific ablation of Il15 enhanced the CD8+ T cell exhaustion phenotype. Muscle-derived IL-15 was required to maintain a population of CD8+CD103+ muscle-infiltrating lymphocytes (MILs). MILs resided in a less inflamed microenvironment, expressed more T cell factor 1 (Tcf1), and had higher proliferative potential than splenic T cells. MILs differentiated into functional effector T cells after reentering lymphoid tissues. Increasing muscle mass via muscle-specific inhibition of TGFβ signaling enhanced IL-15 production and antiviral CD8+ T cell responses. We conclude that skeletal muscle antagonizes T cell exhaustion by protecting T cell proliferative potential from inflammation and replenishing the effector T cell progeny pool in lymphoid organs.

Viruses ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 156 ◽  
Author(s):  
Shannon Kahan ◽  
Allan Zajac

Lymphocytic choriomeningitis virus (LCMV) is a paradigm-forming experimental system with a remarkable track record of contributing to the discovery of many of the fundamental concepts of modern immunology. The ability of LCMV to establish a chronic infection in immunocompetent adult mice was instrumental for identifying T cell exhaustion and this system has been invaluable for uncovering the complexity, regulators, and consequences of this state. These findings have been directly relevant for understanding why ineffective T cell responses commonly arise during many chronic infections including HIV and HCV, as well as during tumor outgrowth. The principal feature of exhausted T cells is the inability to elaborate the array of effector functions necessary to contain the underlying infection or tumor. Using LCMV to determine how to prevent and reverse T cell exhaustion has highlighted the potential of checkpoint blockade therapies, most notably PD-1 inhibition strategies, for improving cellular immunity under conditions of antigen persistence. Here, we discuss the discovery, properties, and regulators of exhausted T cells and highlight how LCMV has been at the forefront of advancing our understanding of these ineffective responses.


2019 ◽  
Vol 6 (3) ◽  
pp. e558 ◽  
Author(s):  
Samuel Knauss ◽  
Corinna Preusse ◽  
Yves Allenbach ◽  
Sarah Leonard-Louis ◽  
Mehdi Touat ◽  
...  

ObjectiveTo investigate the relevance of dysfunctional T cells in immune-mediated myopathies. We analyzed T-cell exhaustion and senescence, in the context of programmed cell death protein 1 (PD1)-related immunity in skeletal muscle biopsies from patients with immune-mediated necrotizing myopathy (IMNM), sporadic inclusion body myositis (sIBM), and myositis induced by immune checkpoint inhibitors (irMyositis).MethodsSkeletal muscle biopsies from 12 patients with IMNM, 7 patients with sIBM, and 8 patients with irMyositis were analyzed by immunostaining and immunofluorescence as well as by quantitative PCR. Eight biopsies from nondisease participants served as controls.ResultsCD3+CD8+ T cells in biopsies from IMNM, sIBM, and irMyositis were largely PD1-positive, while CD68+ macrophages were sparsely positive to the ligand of programmed cell death protein 1 (PD-L1). The sarcolemma of myofibers was PD-L2+ and was colocalized with major histocompatibility complex (MHC) class I. CD68+ macrophages were colocalized with PD-L2. Senescent T cells were strongly enriched in skeletal muscle of sIBM, revealing a distinct immunologic signature. Biopsies from patients with irMyositis showed mild signs of senescence and exhaustion.ConclusionPersistent exposure to antigens in IMNMs and sIBM may lead to T-cell exhaustion, a process controlled by the PD1 receptor and its cognate ligands PD-L1/PD-L2. To our knowledge, these data are the first evidence of presence of dysfunctional T cells and relevance of the PD1 pathway in IMNM, sIBM, and irMyositis. These findings may guide the way to a novel understanding of the immune pathogenesis of immune-mediated myopathies.


2021 ◽  
Vol 11 ◽  
Author(s):  
Amalie Skak Schøller ◽  
Loulieta Nazerai ◽  
Jan Pravsgaard Christensen ◽  
Allan Randrup Thomsen

Expression of programmed cell death-1 receptor (PD-1) has traditionally been linked to T-cell exhaustion, as signaling via PD-1 dampens the functionality of T-cells upon repetitive antigen exposures during chronic infections. However, resent findings pointing to the involvement of PD-1 both in T-cell survival and in restraining immunopathology, challenge the concept of PD-1 solely as marker for T-cell exhaustion. Tissue resident memory T cells (Trms) hold unique effector qualities, but within a delicate organ like the CNS, these protective abilities could potentially be harmful. In contrast to their counterparts in many other tissues, brain derived CD8+ Trms have been found to uniformly and chronically express PD-1. In this study we utilized a recently established model system for generating CNS Trms in order to improve our understanding regarding the role of PD-1 expression by Trms inside the CNS. By intracerebral (i.c.) inoculation with a non-replicating adeno-viral vector, we induced a PD-1hi CD8+ T cell memory population within the CNS. We found that PD-1 expression lowered the severity of clinical disease associated with the i.c. inoculation. Furthermore, high levels of PD-L1 expression were found on the infiltrating monocytes and macrophages as well as on the resident microglia, oligodendrocytes and astrocytes during the acute phase of the response. Additionally, we showed that the intensity of PD-1 expression correlates with local antigen encounter and found that PD-1 expression was associated with decreased CD8+ T cell memory formation in the CNS despite an increased number of infiltrating CD8+ T cells. Most importantly, our experiments revealed that despite expression of PD-1 and several additional markers linked to T-cell exhaustion, Tim-3, Lag-3 and CD39, the cells did not show signs of limited effector capacity. Collectively, these results endorse the increasing amount of evidence pointing to an immune-modifying role for PD-1 expression within the CNS, a mechanism we found to correlate with local antigen exposure.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. SCI-38-SCI-38
Author(s):  
E. John Wherry

Abstract T-cell exhaustion is common during chronic infections, cancer, exposure to persisting antigens, and can prevent optimal immunity. Exhausted T cells are defined by the loss of ability to perform effector functions efficiently, low proliferative capacity, and poor survival following antigen stimulation. In addition, it has become clear that exhausted T cells co-express multiple inhibitory receptors that negatively regulate their function. Indeed, receptors such as PD-1 have become major targets of clinical immunotherapies in cancer and infectious disease aimed at re-invigorating exhausted T cells. Our work has recently defined transcriptional networks of T-cell exhaustion and has focused on the role of key transcription factors, including T-bet and Eomesodermin (Eomes), in controlling the sustainability and terminal differentiation of exhausted T cell populations. Chronic infections and persisting antigen exposure often strains the sustainability or regenerative capacity of exhausted T cell populations resulting in an eventual collapse in immunity. We have found a key role for T-bet in sustaining a progenitor pool of exhausted CD8 T cells during chronic infection, while the related transcription factor Eomes governs terminal differentiation. These represent unique functions for T-bet and Eomes since these transcription factors are associated with different roles in functional memory T cells, highlighting the contextual dependence of transcriptional regulation guiding T-cell exhaustion. Additional studies are focusing on the role of other transcription factors such as BATF in T-cell activation and exhaustion, and on the role of inhibitory receptors including PD-1 in shaping the differentiation of exhausted CD8 T-cell subsets. Ultimately, a more precise molecular understanding of T-cell exhaustion should lead to novel and more robust clinical interventions to reverse exhaustion in settings of persisting infections and cancer. Disclosures: Wherry: Genentech: Patents & Royalties.


2021 ◽  
Vol 7 (18) ◽  
pp. eabd2710
Author(s):  
Chen Zhu ◽  
Karen O. Dixon ◽  
Kathleen Newcomer ◽  
Guangxiang Gu ◽  
Sheng Xiao ◽  
...  

T cell exhaustion has been associated with poor prognosis in persistent viral infection and cancer. Conversely, in the context of autoimmunity, T cell exhaustion has been favorably correlated with long-term clinical outcome. Understanding the development of exhaustion in autoimmune settings may provide underlying principles that can be exploited to quell autoreactive T cells. Here, we demonstrate that the adaptor molecule Bat3 acts as a molecular checkpoint of T cell exhaustion, with deficiency of Bat3 promoting a profound exhaustion phenotype, suppressing autoreactive T cell–mediated neuroinflammation. Mechanistically, Bat3 acts as a critical mTORC2 inhibitor to suppress Akt function. As a result, Bat3 deficiency leads to increased Akt activity and FoxO1 phosphorylation, indirectly promoting Prdm1 expression. Transcriptional analysis of Bat3−/− T cells revealed up-regulation of dysfunction-associated genes, concomitant with down-regulation of genes associated with T cell effector function, suggesting that absence of Bat3 can trigger T cell dysfunction even under highly proinflammatory autoimmune conditions.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254243
Author(s):  
Meritxell Llorens-Revull ◽  
Maria Isabel Costafreda ◽  
Angie Rico ◽  
Mercedes Guerrero-Murillo ◽  
Maria Eugenia Soria ◽  
...  

Background & aims HCV CD4+ and CD8+ specific T cells responses are functionally impaired during chronic hepatitis C infection. DAAs therapies eradicate HCV infection in more than 95% of treated patients. However, the impact of HCV elimination on immune responses remain controversial. Here, we aimed to investigate whether HCV cure by DAAs could reverse the impaired immune response to HCV. Methods We analyzed 27 chronic HCV infected patients undergoing DAA treatment in tertiary care hospital, and we determined the phenotypical and functional changes in both HCV CD8+ and CD4+ specific T-cells before and after viral clearance. PD-1, TIM-3 and LAG-3 cell-surface expression was assessed by flow cytometry to determine CD4+ T cell exhaustion. Functional responses to HCV were analyzed by IFN-Ɣ ELISPOT, intracellular cytokine staining (IL-2 and IFN-Ɣ) and CFSE-based proliferation assays. Results We observed a significant decrease in the expression of PD-1 in CD4+ T-cells after 12 weeks of viral clearance in non-cirrhotic patients (p = 0.033) and in treatment-naive patients (p = 0.010), indicating a partial CD4 phenotype restoration. IFN-Ɣ and IL-2 cytokines production by HCV-specific CD4+ and CD8+ T cells remained impaired upon HCV eradication. Finally, a significant increase of the proliferation capacity of both HCV CD4+ and CD8+ specific T-cells was observed after HCV elimination by DAAs therapies. Conclusions Our results show that in chronically infected patients HCV elimination by DAA treatment lead to partial reversion of CD4+ T cell exhaustion. Moreover, proliferative capacity of HCV-specific CD4+ and CD8+ T cells is recovered after DAA’s therapies.


2021 ◽  
Vol 11 ◽  
Author(s):  
Weiqin Jiang ◽  
Yinjun He ◽  
Wenguang He ◽  
Guosheng Wu ◽  
Xile Zhou ◽  
...  

Tumor-specific CD8+T cells are exposed to persistent antigenic stimulation which induces a dysfunctional state called “exhaustion.” Though functioning to limit damage caused by immune response, T cell exhaustion leads to attenuated effector function whereby cytotoxic CD8+T cells fail to control tumor progression in the late stage. This pathway is a dynamic process from activation to “progenitor exhaustion” through to “terminally exhaustion” with distinct properties. With the rapid development of immunotherapy via enhancing T cell function, new studies are dissecting the mechanisms and identifying specific biomarkers of dynamic differentiation during the process of exhaustion. Further, although immune checkpoint inhibitors (ICIs) have achieved great success in clinical practice, most patients still show limited efficacy to ICIs. The expansion and differentiation of progenitor exhausted T cells explained the success of ICIs while the depletion of the progenitor T cell pool and the transient effector function of terminally exhausted T cells accounted for the failure of immune monotherapy in the context of exorbitant tumor burden. Thus, combination strategies are urgent to be utilized based on the reduction of tumor burden or the expansion of the progenitor T cell pool. In this review, we aim to introduce the concept of homeostasis of the activated and exhausted status of CD8+T cells in the tumor immune microenvironment, and present recent findings on dynamic differentiation process during T cell exhaustion and the implications for combination strategies in immune therapy.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A673-A673
Author(s):  
Rhodes Ford ◽  
Natalie Rittenhouse ◽  
Nicole Scharping ◽  
Paolo Vignali ◽  
Greg Delgoffe ◽  
...  

BackgroundCD8+ T cells are a fundamental component of the anti-tumor response; however, tumor-infiltrating CD8+ T cells (TIL) are rendered dysfunctional by the tumor microenvironment. CD8+ TIL display an exhausted phenotype with decreased cytokine expression and increased expression of co-inhibitory receptors (IRs), such as PD-1 and Tim-3. The acquisition of IRs mark the progression of dysfunctional TIL from progenitors (PD-1Low) to terminally exhausted (PD-1+Tim-3+). How the chromatin landscape changes during this progression has not been described.MethodsUsing a low-input ChIP-based assay called Cleavage Under Targets and Release Using Nuclease (CUT&RUN), we have profiled the histone modifications at the chromatin of tumor-infiltrating CD8+ T cell subsets to better understand the relationship between the epigenome and the transcriptome as TIL progress towards terminal exhaustion.ResultsWe have identified two epigenetic characteristics unique to terminally exhausted cells. First, we have identified a unique set of genes, characterized by active histone modifications that do not have correlated gene expression. These regions are enriched for AP-1 transcription factor motifs, yet most AP-1 family factors are actively downregulated in terminally exhausted cells, suggesting signals that promote downregulation of AP-1 expression negatively impacts gene expression. We have shown that inducing expression of AP-1 factors with a 41BB agonist correlates with increased expression of these anticorrelated genes. We have also found a substantial increase in the number of genes that exhibit bivalent chromatin marks, defined by the presence of both active (H3K4me3) and repressive (H3K27me3) chromatin modifications that inhibit gene expression. These bivalent genes in terminally exhausted T cells are not associated with plasticity and represent aberrant hypermethylation in response to tumor hypoxia, which is necessary and sufficient to promote downregulation of bivalent genes.ConclusionsOur study defines for the first time the roles of costimulation and the tumor microenvironment in driving epigenetic features of terminally exhausted tumor-infiltrating T cells. These results suggest that terminally exhausted T cells have genes that are primed for expression, given the right signals and are the basis for future work that will elucidate that factors that drive progression towards terminal T cell exhaustion at the epigenetic level and identify novel therapeutic targets to restore effector function of tumor T cells and mediate tumor clearance.


2021 ◽  
Author(s):  
Susetta Finotto ◽  
Patricia Haag ◽  
Darja Andreev ◽  
Nina Li ◽  
Alexander Kiefer ◽  
...  

Abstract Background: Serum 25(OH)-Vitamin D3 (VitD3) deficiency during infancy has been associated with asthma. The potential therapeutic role of VitD3 given in the airways and its interference with the allergen and Rhinovirus was the objective of this study. Methods: In two cohorts of children with and without asthma, serum levels of the C-reactive protein (CRP) were correlated to Serum VitD3 and in peripheral blood T cell inhibitor marker Programmed cell death protein 1 (PD1) mRNA was analyzed. In a murine model, VitD3 was given intranasally in vivo and in vitro to lung cells with allergen and Rhinovirus. Results: In the cohorts of pre-school age children without (control) asthma, CRP and VitD3 levels inversely correlated. In preschool asthmatic children that did not receive VitD3 supplementation as infant had more episode of asthma exacerbation associated with high CRP serum level. In peripheral blood cells from control but not asthmatic children with higher serum levels of VitD3 had lower PD1 mRNA levels. In murine model, OVA intranasal challenge induced Innate Lymphoid Cells type 2 (ILC2)-associated markers and Eosinophils in BALF and VitD3 inhibited lung inflammation and ILC2 markers. Furthermore, VitD3 given intranasally, induced CD4+T cells and reduced PD1, T regulatory cells in the lung. Similarly, VitD3 had a suppressive role on CD4+PD1+ T cells involved in T cell exhaustion in the airways in the absence of ST2 after Rhinovirus infection. Conclusion: These data support an inhibitory role of VitD3 on T cell exhaustion after allergen and rhinovirus infection that is relevant for pediatric asthma.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yunmeng Bai ◽  
Meiling Hu ◽  
Zixi Chen ◽  
Jinfen Wei ◽  
Hongli Du

T-cell exhaustion is one of the main reasons of tumor immune escape. Using single-cell transcriptome data of CD8+ T cells in multiple cancers, we identified different cell types, in which Pre_exhaust and exhausted T cells participated in negative regulation of immune system process. By analyzing the coexpression network patterns and differentially expressed genes of Pre_exhaust, exhausted, and effector T cells, we identified 35 genes related to T-cell exhaustion, whose high GSVA scores were associated with significantly poor prognosis in various cancers. In the differentially expressed genes, RGS1 showed the greatest fold change in Pre_exhaust and exhausted cells of three cancers compared with effector T cells, and high expression of RGS1 was also associated with poor prognosis in various cancers. Additionally, RGS1 protein was upregulated significantly in tumor tissues in the immunohistochemistry verification. Furthermore, RGS1 displayed positive correlation with the 35 genes, especially highly correlated with PDCD1, CTLA4, HAVCR2, and TNFRSF9 in CD8+ T cells and cancer tissues, indicating the important roles of RGS1 in CD8+ T-cell exhaustion. Considering the GTP-hydrolysis activity of RGS1 and significantly high mRNA and protein expression in cancer tissues, we speculated that RGS1 potentially mediate the T-cell retention to lead to the persistent antigen stimulation, resulting in T-cell exhaustion. In conclusion, our findings suggest that RGS1 is a new marker and promoting factor for CD8+ T-cell exhaustion and provide theoretical basis for research and immunotherapy of exhausted cells.


Sign in / Sign up

Export Citation Format

Share Document