scholarly journals PBRM1 and the glycosylphosphatidylinositol biosynthetic pathway promote tumor killing mediated by MHC-unrestricted cytotoxic lymphocytes

2020 ◽  
Vol 6 (48) ◽  
pp. eabc3243
Author(s):  
Bridget L. Menasche ◽  
Eric M. Davis ◽  
Shifeng Wang ◽  
Yan Ouyang ◽  
Suzhao Li ◽  
...  

Major histocompatibility complex (MHC)–unrestricted cytotoxic lymphocytes (CLs) such as natural killer (NK) cells can detect and destroy tumor and virus-infected cells resistant to T cell–mediated killing. Here, we performed genome-wide genetic screens to identify tumor-intrinsic genes regulating killing by MHC-unrestricted CLs. A group of genes identified in our screens encode enzymes for the biosynthesis of the glycosylphosphatidylinositol (GPI) anchor, which is not involved in tumor response to T cell–mediated cytotoxicity. Another gene identified in the screens was PBRM1, which encodes a subunit of the PBAF form of the SWI/SNF chromatin-remodeling complex. PBRM1 mutations in tumor cells cause resistance to MHC-unrestricted killing, in contrast to their sensitizing effects on T cell–mediated killing. PBRM1 and the GPI biosynthetic pathway regulate the ligands of NK cell receptors in tumor cells and promote cytolytic granule secretion in CLs. The regulators identified in this work represent potential targets for cancer immunotherapy.

Blood ◽  
2002 ◽  
Vol 99 (1) ◽  
pp. 232-237 ◽  
Author(s):  
Bellinda A. Bladergroen ◽  
Chris J. L. M. Meijer ◽  
Rosita L. ten Berge ◽  
C. Erik Hack ◽  
Jettie J. F. Muris ◽  
...  

In tumor cells, the serine protease granzyme B is the primary mediator of apoptosis induced by cytotoxic T lymphocytes (CTLs)/natural killer (NK) cells. The human intracellular serpin proteinase inhibitor 9 (PI9) is the only known human protein able to inhibit the proteolytic activity of granzyme B. When present in the cytoplasm of T lymphocytes, PI9 is thought to protect CTLs against apoptosis induced by their own misdirected granzyme B. Based on the speculation that tumors may also express PI9 to escape CTL/NK cell surveillance, immunohistochemical studies on the expression of PI9 in various lymphomas were performed. Ninety-two cases of T-cell non-Hodgkin lymphoma (NHL), 75 cases of B-cell NHL, and 57 cases of Hodgkin lymphomas were stained with a PI9-specific monoclonal antibody. In T-cell NHL, highest PI9 expression was found in the extranodal T-cell NHL. In nearly 90% of enteropathy-type T-cell NHLs and 80% of NK/T-cell, nasal-type lymphomas, the majority of the tumor cells expressed PI9. In nodal T-anaplastic large cell lymphomas and peripheral T-cell lymphomas (not otherwise specified), PI9 expression occurred less frequently. In B-cell NHL, PI9 expression was associated with high-grade malignancy; 43% of diffuse large B-cell lymphomas showed PI9+ tumor cells. Finally, PI9 expression was also found in 10% of Hodgkin lymphomas. This is the first report describing the expression of the granzyme B inhibitor PI9 in human neoplastic cells in vivo. Expression of this inhibitor is yet another mechanism used by tumor cells to escape their elimination by cytotoxic lymphocytes.


2013 ◽  
Vol 133 (7) ◽  
pp. 1643-1652 ◽  
Author(s):  
Erik Wennerberg ◽  
Dhifaf Sarhan ◽  
Mattias Carlsten ◽  
Vitaliy O. Kaminskyy ◽  
Padraig D'Arcy ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1789-1789
Author(s):  
Andreas Lundqvist ◽  
Sheila Rao ◽  
Maria Berg ◽  
Aleah Smith ◽  
Su Su ◽  
...  

Abstract The proteasome inhibitor bortezomib was recently found to render tumor cells susceptible to natural killer (NK) cell-mediated apoptosis in vitro and in vivo. This sensitization appears to occur as a consequence of this agent up-regulating surface expression of tumor necrosis factor-related apoptosis-inducing ligand receptor 2 (TRAIL-R2) on human malignant cells rendering them susceptible to TRAIL-mediated NK cell cytotoxicity. We hypothesized that bortezomib would likewise sensitize tumors to the cytotoxic effects of antigen specific T-cells through similar apoptotic pathways, thereby providing an incentive to use bortezomib as a universal immune-sensitizing agent. The HLA-A2+, gp100+, MART-1+ melanoma cell lines 526 and 624 were treated with 10nM bortezomib for 18 hrs then were analyzed by FACS for expression the cell surface markers (HLA-ABC, MIC-A/B, TRAIL-R1/2 and Fas) and Cr51 cytotoxicity assay for susceptibility to CD8+/HLA-A2+ restricted gp100 and MART-1 specific CTL-mediated lysis. As observed previously, NK cell-mediated apoptosis was significantly higher in tumor cells treated with bortezomib compared to untreated tumor cells. In contrast, an unanticipated and significant reduction in CTL-mediated cytotoxicity was observed in tumors treated with bortezomib compared to untreated tumors; at an effector:target ratio of 3:1, NK cell cytotoxicity increased from 43±2% to 70±2% (p<0.01) while gp100 CTL cytotoxicity decreased from 34±4% to 18±2% (p<0.01) in 624 melanoma cells after exposure to bortezomib (figure). This inhibition in T-cell killing was not due to changes in tumor surface expression of MHC class I, MIC-A/B, TRAIL receptors or Fas. Remarkably, CTL-mediated cytotoxicity was restored to baseline in tumor cells that were pulsed with gp100 antigen following bortezomib treatment, suggesting proteasome inhibition by bortezomib altered or impaired the processing and presentation of the gp100 tumor antigen. Conclusions: Exposure of malignant cells to bortezomib results in simultaneous divergent effects on innate NK cell and adaptive T-cell anti-tumor immunity. While tumors exposed to bortezomib have enhanced susceptibility to NK-cell cytotoxicity, proteasome inhibition appears to disrupt antigen presentation potentially reducing tumor specific CTL effector responses. These findings suggest antigen specific T-cell responses such as graft-vs-host disease, and T-cell mediated graft-vs-tumor effects might be altered when bortezomib is administered following allogeneic hematopoietic cell transplantation. Figure. Melanoma cell line (624) was treated with bortezomib [10 nM] and analyzed for susceptibility to NK cell (left) and gp100-specific CD8+ CTL (middle) - mediated cytotoxicity in a 5h Cr51 cytotoxicity assay. Right - bortezomib-treated and untreated gp100:209 peptide pulsed 624 melanoma cells analyzed for susceptibility to gp100-specific CD8+ CTL-mediated cytotoxicity at a E:T ratio of 4:1 Figure. Melanoma cell line (624) was treated with bortezomib [10 nM] and analyzed for susceptibility to NK cell (left) and gp100-specific CD8+ CTL (middle) - mediated cytotoxicity in a 5h Cr51 cytotoxicity assay. Right - bortezomib-treated and untreated gp100:209 peptide pulsed 624 melanoma cells analyzed for susceptibility to gp100-specific CD8+ CTL-mediated cytotoxicity at a E:T ratio of 4:1


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4088-4088
Author(s):  
Serena Kimi Perna ◽  
Biagio De Angelis ◽  
Daria Pagliara ◽  
Lan Zhan ◽  
Cliona M Rooney ◽  
...  

Abstract Abstract 4088 Poster Board III-1023 Although adoptive transfer of antigen-specific CTLs is generally safe and can be clinically effective for the treatment of several malignancies, the administration of stimulatory cytokines may be required to sustain their long-term growth and persistence in vivo. IL2, a γ-chain T-cell growth cytokine, has been used clinically, but is associated with significant toxicities. In addition, IL2 supports the expansion and function of Tregs, counterbalancing its stimulatory effects on CTLs and favoring the establishment of an immune-protected microenvironment for cancer. IL15, like IL2, is a γ-chain cytokine capable of sustaining the expansion and function of effector T cells. We have explored whether this cytokine also shares with IL2 an unwanted stimulatory effect on Tregs. Naturally occurring Tregs (CD4+CD25bright) were isolated from buffy coat preparations from healthy volunteers (mean of Treg recovery: 0.7% ± 0.05% of the starting population of mononuclear cells). The suppressive function of isolated Tregs was confirmed by their ability to inhibit the proliferation of activated T lymphocytes labeled with carboxyfluorescin diacetate succinimidyl ester (CFSE) using FACS analysis to measure CFSE dilution after 5-6 days of culture (activated T cell:Treg ratio 1:1). The proliferation of activated T cells in the presence of Tregs was significantly reduced (28%±5%) as compared to activated T cells cultured in the presence of control CD4+CD25– T cells (59%±5%) (p<0.05). Following addition of IL15 (2.5 ng/mL), however, proliferation of activated T cells continued even in the presence of Tregs (83%±5% plus IL15 without Tregs vs. 80%±5% plus IL15 and Tregs) (p=0.9), suggesting that this cytokine mitigates the immunosuppressive effects of Tregs. We then analyzed whether Tregs affected the anti-tumor activity of antigen-specific CTLs. We used our Epstein-Barr-Virus-(EBV)-specific CTLs as tumor model. EBV-CTLs were co-cultured with EBV-infected cells (LCLs) (CTL:LCL ratio 1:2). Residual tumor cells were enumerated by FACS analysis after 5-7 days of culture. In the absence of exogenous IL-15, EBV-CTLs failed to eliminate EBV-infected cells (residual LCLs: 37%±8%), while the addition of IL15 (2.5 ng/mL) increased the anti-tumor effect of CTLs, so that only 4%±1% tumor cells were detectable at the end of the culture. We then explored the effects of adding Treg to the cultures (Treg:CTL ratio 1:1). The percentage of tumor cells increased rather than decreased by day 5-7 when CTLs were cultured with Tregs in the absence of IL15 (residual tumor cells from 37%±8% in the absence of Tregs to 53%±9% in the presence of Tregs) (p<0.05). When IL15 was added, Treg were more limited in their ability to inhibit T effector cells, so that residual tumor cells were 4%±1% and 11%±3% % in the absence or in the presence of Tregs, respectively. To discover if IL15 has a direct effect on Tregs, we analyzed STAT5 phosphorylation after exposing Tregs to the cytokine. We found that this molecule was phosphorylated in 47%±18% of Tregs 15 minutes after exposure to IL15 (2.5 ng/mL). This effect was mediated by the specific interaction of the cytokine with its own receptor, as no phosphorylation occurred when Treg cells were pre-incubated with an IL-15Rα blocking antibody. This action on Tregs notwithstanding, IL15 stimulation did not modulate Treg inhibitory function, since these cells, even after exposure to IL15 (2.5 ng/mL) for 3-5 days, continued to significantly inhibit the proliferation of T lymphocytes activated in the absence of IL-15 (74%±17% inhibition). Hence, IL15 enhance the proliferative and anti-tumor effects of antigen-specific CTLs, and these effects are not impaired by the presence of Tregs. Administration of IL15 may therefore benefit patients receiving adoptive T cell therapies. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2517-2517 ◽  
Author(s):  
Zachary B. Davis ◽  
Todd Lenvik ◽  
Louis Hansen ◽  
Martin Felices ◽  
Sarah Cooley ◽  
...  

Abstract Natural Killer (NK) cells, a critical component of the immune response to viral infection, recognize and destroy cells with diminished expression of major histocompatibility class-I (MHC-I) molecules and expression of ligands for activating NK receptors such as NKG2D. Down-modulation of MHC-I is a hallmark of viral infection, as it allows infected cells to evade a CD8 T-cell response. Stalling of the cell cycle to enhance viral replication induces NK activation ligands such as the NKG2D ligands unique long binding proteins (ULBP)-1 and -2 which could trigger NK destruction of infected cells. Unfortunately, incomplete down-modulation of MHC-I by HIV leaves HLA-C on the cell surface, which inhibits the majority of NK cells from killing infected targets. CD16, the low affinity Fc receptor, is the most potent NK cell activating receptor. It mediates antibody dependent cell-mediated cytotoxicity (ADCC), and can override inhibition by MHC-I. We designed a series of bi-specific killer-engager (BiKE) constructs to direct NK cell ADCC against an HIV-infected target. We linked the Fab portions of broadly neutralizing (bn)Abs to a novel llama-derived nanobody EF91 that binds CD16 at high affinity and signals strong activation. We chose to use EF91 as its structure is unique compared to the use of a single chain variable fragment (scFv). Rather than being composed of a variable heavy (VH) and variable light (VL) chain, the nanobody is composed of a single variable heavy (VHH) domain. A distinct advantage to using a CD16 nanobody over a scFv is in the purity of the generated product. During protein folding it is not uncommon for the wrong VH to associate with the wrong VL; the result of which is a nonfunctional product. Since the nanobody is single VHH, and does not require association with another domain, there is less risk of a misfolded product. Nanobodies are also known to have similar, if not increased, affinity for their target molecules. In the case of EF91, this may result in more robust activation of NK cells than with a traditional scFv. We tested a BiKE constructed with the bnAb, VRC01, which recognizes the CD4 binding domain of HIV-Env. The specificity of our novel anti-CD16 nanobody was demonstrated by binding of our BiKE construct to CD16+ NK cells (Figure 1A). Function of our BiKE construct was tested by incubating it with chronically infected T-cell lines (HIV-IIIB and ACH-2) or with their respective uninfected counterparts (H9 and CEM). We only observed binding to infected cells (Figure 1B), demonstrating HIV-Env binding specificity to the HIV strains ACH-2 (LAI strain) and HIV-IIIB. The ability of the anti-Env BiKE construct to mediate ADCC and IFNγ production was tested against two uninfected CD4 T-cell lines or their infected counterparts. While NK cells degranulated when incubated with the infected cell lines (50% against HIV-IIIB and 20% against LAI), this response was markedly enhanced when co-incubated with the HIV-Env specific BiKE (80% against HIV-IIIB and 60% against LAI) (Figure 1C). Furthermore, the HIV-Env BiKE enhanced IFNγ production against HIV-infected T-cell lines compared to responses in the absence of BiKE (28% against HIV-IIIB compared to 36% with BiKE; 15% against ACH-2 compared to 37% with BiKE) (Figure 1D). Our data demonstrate that a BiKE construct containing the Fab of an HIV bnAb and an anti-CD16 component can eliminate HIV-infected targets that express the HIV-envelope on their surface. The reservoir of latently infected CD4 T cells lack expression of any recognizable virus protein on the cell surface, we plan to combine our BiKE strategy with cellular activation using IL-15. Alternatively, we can construct a tri-specific engager (TriKE) with an IL-15 segment that may activate CD4 T cells while enhancing NK cell killing. Disclosures Cooley: Fate Therapeutics: Research Funding. Vallera:Oxis Biotech: Consultancy, Membership on an entity's Board of Directors or advisory committees. Miller:Fate Therapeutics: Consultancy, Research Funding; Oxis Biotech: Consultancy, Other: SAB.


Blood ◽  
2005 ◽  
Vol 106 (3) ◽  
pp. 779-786 ◽  
Author(s):  
Kent S. Boles ◽  
Winfried Barchet ◽  
Tom Diacovo ◽  
Marina Cella ◽  
Marco Colonna

AbstractThe tumor suppressor in lung cancer-1 (TSLC1) gene is frequently silenced in human lung carcinomas, and its expression suppresses tumorigenesis in nude mice. TSLC1 encodes a cell-surface protein called Necl-2 that belongs to the Nectin and Nectin-like (Necl) family of molecules. Necl-2 mediates epithelial cell junctions by homotypic contacts and/or heterotypic interactions with other Nectins and Necls. Thus, it inhibits tumorigenesis by ensuring that epithelial cells grow in organized layers. Here, we demonstrate that natural killer (NK) cells and CD8+ T cells recognize Necl-2 through a receptor known as class I-restricted T-cell–associated molecule (CRTAM), which is expressed only on activated cells. CRTAM–Necl-2 interactions promote cytotoxicity of NK cells and interferon γ (IFN-γ) secretion of CD8+ T cells in vitro as well as NK cell–mediated rejection of tumors expressing Necl-2 in vivo. These results provide evidence for an additional mechanism of tumor suppression mediated by TSLC1 that involves cytotoxic lymphocytes. Furthermore, they reveal Necl-2 as one of the molecular targets that allows the immunosurveillance network to distinguish tumor cells from normal cells.


Blood ◽  
1993 ◽  
Vol 81 (10) ◽  
pp. 2688-2695 ◽  
Author(s):  
P Kanavaros ◽  
MC Lescs ◽  
J Briere ◽  
M Divine ◽  
F Galateau ◽  
...  

Recent evidence has shown that most nasal lymphomas (NL) are associated with a T-cell phenotype and are thus called nasal T-cell lymphomas (NTCL), but little information is available about the T-cell receptor (TCR) expression. The presence of Epstein-Barr virus (EBV) genome has been recently reported in NTCL in Oriental populations in which NL and EBV-associated tumors are more common and in occasional Occidental cases. This prompted us to investigate lymphoma biopsies from 7 non- Oriental patients with NTCL for the expression of natural killer (NK) and T-cell antigens, including TCR proteins, for the presence of EBV- encoded latent membrane protein (LMP) using immunohistochemistry and for the presence of EBV DNA and Epstein-Barr early region (EBER) RNA using in situ hybridization (ISH). Six cases displayed a CD3-, TCR alpha beta-, TCR gamma delta-, CD2+, CD7+, CD5-, CD4-, CD8-, CD56+ phenotype, suggesting that these tumors may be peripheral T-cell lymphomas (PTCL) with extensive loss of T-cell antigens and expression of the NK-cell (CD56) antigen or, alternatively, NK-cell neoplasias. The remaining case was a gamma delta PTCL, as shown by the CD3+, TCR gamma delta+ phenotype and the biallelic gamma and delta TCR gene rearrangements. Using ISH, EBER RNA transcripts were detected in tumor cells in all cases and EBV DNA was shown in the 6 tested cases. In all cases, tumor cells expressed LMP. These findings support the concept that NTCL constitute a distinct group of lymphomas that, in addition to their peculiar clinical features, exhibit an unusual TCR “silent” CD56+ or TCR gamma delta+ phenotype and harbor the EBV. In view of the LMP transforming potential, these data suggest that EBV may play a role in the pathogenesis of NTCL.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1342-1342 ◽  
Author(s):  
Yibo Zhang ◽  
Lichao Chen ◽  
Yufeng Wang ◽  
Xinxin Li ◽  
Tiffany Hughes ◽  
...  

Abstract Daratumumab (Dara), a targeted therapy utilizing a monoclonal antibody against CD38, and its combination with other are becoming a new standard of care treatment in multiple myeloma (MM). Recently, chimeric antigen receptor (CAR) T cell immunotherapy has been successful in the clinic for the treatment of leukemia and lymphoma. Our preliminary data suggest that both CS1-CAR T cells and CS1-CAR NK cells are effective in eradicating MM cells in vitro and in vivo (Chu et al., 2014, Leukemia and Chu et al., 2014, Clinical Cancer Research). In this study, we investigated the combination therapy with Dara and CS1-CAR NK cells for the treatment of relapsed MM. We first showed that that in MM patients, CD38brightCD138─CD34─CD20+CD27+ MM cancer stem-like cells (CSCs) express CS1 at levels much higher than any other cells, and are susceptible to being eradicated by CS1-CAR NK cells. However, CD34+hematopoietic stem cells from bone marrow of healthy donors do not express CS1. These data suggest that CS1-CAR NK cells can target MM CSCs, and thus may prevent relapse of MM, as ample evidence shows that relapsed or recurrent tumor cells are derived from CSCs. We also demonstrated that CD38 is highly expressed on NK and MM cells. Dara triggered IFN-γ and GZMB expression (p< 0.01) in primary human NK cells, even in the absence of crosslinking with tumor cells. Interestingly, the increase IFN-γ expression can be validated in the CD16 (+) haNK-92 (high-affinity natural killer cells), but not in the parental NK-92 cell line. Blocking the recognition between CD16 and Dara (an IgG1 mAb) with an Fc blocking Ab completely impaired Dara-induced IFN-γ and GZMB expression, indicating that Dara-induced NK cell activation is CD16-dependent. Mechanistically, Dara significantly induced phosphorylation of NFkB and STAT1, indicating that Dara induces IFN-γ and GZMB in NK cells, which may occur through CD16 and be mediated downstream by STAT1 and NFkB. We also found that Dara failed to stimulate GZMB and IFN-γ expression in CD38(-) CD16(+) NK cells, while successful in stimulating CD38(+) CD16(+) NK cells, indicating that Dara induces NK cell activation, which requires not only the binding between CD16 and Fc fragment of Dara, but also the CD38 signaling pathway. Furthermore, we found that Dara mediated cytotoxicity of NK cells against MM cells through antibody-dependent cell-mediated cytotoxicity (ADCC) against CD38-positive (e.g., MM1.S), but not CD38-negative (e.g., U266), which can be blocked by CD16 blocking Ab. Moreover, Dara displays ADCC effects in CD16(+) NK cells but not CD16(-) NK cells. When CD16(+) NK cells were armed with the CS1-CAR, ADCC is still observed against CD38(+) MM cells at low effector to target ratios, i.e., Dara still enhances cytotoxicity of CS1-CAR NK cells, which already have enhanced cytotoxicity. We observed that Dara-induced NK cell ADCC against CD38(+) MM MM1.S cells led to increased T cell proliferation and activation in a co-culture system including dendritic cells. This effect was not observed when MM U266 cells were included as the NK cell target. Out data are consistent with that recent discovery by DiLillo and Ravetch showing that engagement of monoclonal antibody can induce an antitumor vaccine effects (David J et al., Cell, 2015). To tested Dara affects NK cell survival, immunoblotting was performed with anti-cleaved Caspase-3 and anti-cleaved PARP-1 antibodies. We demonstrated that apoptotic activity was increased in both CD16(+)NK cells (primary NK and haNK-92) and parental CD16(-)NK-92 cells treated with Dara for 24 h in a dose-dependent manner. Unlike Dara's positive effects on CD16(+) NK cells (i.e. stimulating IFN-γ production and ADCC), induction of apoptosis seems to be CD16-independent, as parental NK-92 cells, which are CD16(-), also showed an increased levels of apoptosis induced by Dara. We are testing whether the apoptosis induction is dependent on the antigen for Dara, because as mentioned above, both primary NK cells, and modified as well as unmodified NK-92 cells, that were CD38 (+). In conclusion, our study demonstrates that the combination of Dara and CS1-CAR NK cells, which target two different tumor-associated antigens, both of which have potent anti-MM efficacy, may show additive or synergistic effects; however due to the positive and negative effects of Dara on NK cells, sequential treatment rather than a concomitant treatment modality should be considered. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4164-4164
Author(s):  
Stefanie Raab ◽  
Korbinian Nepomuk Kropp ◽  
Alexander Steinle ◽  
Gerd Klein ◽  
Lothar Kanz ◽  
...  

Abstract Introduction: NK cells are cytotoxic lymphocytes the reactivity of which is governed by the principles of ‘missing-self’ and “induced-self’ recognition. This implies that cells with low or absent expression of MHC class I and/or stress-induced expression of ligands for activating receptors like NKG2D (NKG2DL) are preferentially eliminated by NK cells. We and others reported previously that NKG2DL undergo proteolytic cleavage (i.e. shedding) which promotes evasion from NKG2D-mediated tumor immunosurveillance. Notably, the reactivity of NK cells is also influenced by various other components of the hematopoietic system, and we and others provided evidence for the involvement of platelets in tumor immune evasion including impairment of NKG2D-mediated immune surveillance (e.g., Kopp et al., Cancer Res 2009, Raab et al., Blood 2013 122:3488). Here we extend our recent findings and provide further data how platelets affect immunostimulatory NKG2D-NKG2DL interaction. Methods: Tumor cells were incubated with platelets from healthy donors or treated with platelet-derived soluble factors (releasate) obtained by stimulation of platelets with known platelet agonists including ADP and thrombin. NKG2DL and ADAM10 as well as ADAM17 surface expression on tumor cells and platelets, respectively, was measured by FACS, while release of NKG2DL was determined by ELISA. ADAM10 and 17 protein levels were assessed by immunoblotting. NK cell lysis of tumor cells in the presence or absence of coating platelets or platelet releasate was determined by chromium release assays. Results: We found that interaction of platelets with tumor cells resulted in substantially reduced NKG2DL expression on the surface of the malignant cells, which was paralleled by enhanced release of soluble NKG2DL. Similar albeit weaker effects were observed upon treatment of tumor cells with platelet releasate, indicating that platelet-derived factors mediate NKG2DL shedding from the tumor cell surface. Notably, ADAM10 and ADAM17, the known sheddases of NKG2DL, were found to be expressed on the platelet surface, and sheddases could also be detected in platelet releasate, pointing to an involvement in platelet-mediated NKG2DL shedding. Diminished NKG2DL surface expression resulted in reduced NKG2D-mediated NK cell cytotoxicity as revealed by blocking experiments using NKG2D antibody and F(ab)2 fragments specific for the modulated NKG2DL. Conclusion: We propose that induction of NKG2DL shedding constitutes a novel mechanism by which the interaction of platelets with metastasizing tumor cells impairs NK cell immunosurveillance. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Sonia Ghilas ◽  
Marc Ambrosini ◽  
Jean-Charles Cancel ◽  
Marion Massé ◽  
Hugues Lelouard ◽  
...  

SummaryA successful immune response relies on a tightly regulated delivery of the right signals to the right cells at the right time. Here we show that innate and innate-like lymphocytes use two mechanisms to orchestrate in time and space the functions of conventional type 1 dendritic cells (cDC1) in spleen. Early after murine cytomegalovirus infection, XCL1 production by lymphocytes with innate functions attracts red pulp cDC1 near IFN-γ-producing NK cells, generating superclusters around infected cells in the marginal zone. There, cDC1 and NK cells physically interact reinforcing their reciprocal activation. Targeted IL-12 delivery and IL-15/IL-15Rα transpresentation by cDC1 trigger NK cell activation and expansion. In return, activated NK cells deliver GM-CSF to cDC1, triggering their CCR7-dependent relocalization into the T cell zone. This NK cell-dependent licensing of cDC1 accelerates the priming of virus-specific CD8+ T cells. Our findings reveal a novel mechanism through which cDC1 bridge innate and adaptive immunity.


Sign in / Sign up

Export Citation Format

Share Document