scholarly journals Targeted Delivery of Exosomes Armed with Anti-Cancer Therapeutics

Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 85
Author(s):  
Hojun Choi ◽  
Hwayoung Yim ◽  
Cheolhyoung Park ◽  
So-Hee Ahn ◽  
Yura Ahn ◽  
...  

Among extracellular vesicles, exosomes have gained great attention for their role as therapeutic vehicles for delivering various active pharmaceutical ingredients (APIs). Exosomes “armed” with anti-cancer therapeutics possess great potential for an efficient intracellular delivery of anti-cancer APIs and enhanced targetability to tumor cells. Various technologies are being developed to efficiently incorporate anti-cancer APIs such as genetic materials (miRNA, siRNA, mRNA), chemotherapeutics, and proteins into exosomes and to induce targeted delivery to tumor burden by exosomal surface modification. Exosomes can incorporate the desired therapeutic molecules via direct exogenous methods (e.g., electroporation and sonication) or indirect methods by modifying cells to produce “armed” exosomes. The targeted delivery of “armed” exosomes to tumor burden could be accomplished either by “passive” targeting using the natural tropism of exosomes or by “active” targeting via the surface engineering of exosomal membranes. Although anti-cancer exosome therapeutics demonstrated promising results in preclinical studies, success in clinical trials requires thorough validation in terms of chemistry, manufacturing, and control techniques. While exosomes possess multiple advantages over synthetic nanoparticles, challenges remain in increasing the loading efficiency of anti-cancer agents into exosomes, as well as establishing quantitative and qualitative analytical methods for monitoring the delivery of in vivo administered exosomes and exosome-incorporated anti-cancer agents to the tumor parenchyma.

Pharmaceutics ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 261
Author(s):  
Wei Mao ◽  
Sol Lee ◽  
Ji Un Shin ◽  
Hyuk Sang Yoo

Surface initiated atom transfer radical polymerization (SI-ATRP) documented a simple but efficient technique to grow a dense polymer layer on any surface. Gold nanoparticles (AuNPs) give a broad surface to immobilize sulfhyryl group-containing initiators for SI-ATRP; in addition, AuNPs are the major nanoparticulate carriers for delivery of anti-cancer therapeutics, since they are biocompatible and bioinert. In this work, AuNPs with a disulfide initiator were polymerized with sulfoethyl methacrylate by SI-ATRP to decorate the particles with anionic corona, and branched polyethyeleneimine (PEI) and siRNA were sequentially layered onto the anionic corona of AuNP by electrostatic interaction. The in vitro anti-cancer effect confirmed that AuNP with anionic corona showed higher degrees of apoptosis as well as suppression of the oncogene expression in a siRNA dose-dependent manner. The in vivo study of tumor-bearing nude mice revealed that mice treated with c-Myc siRNA-incorporated AuNPs showed dramatically decreased tumor size in comparison to those with free siRNA for 4 weeks. Furthermore, histological examination and gene expression study revealed that the decorated AuNP significantly suppressed c-Myc expression. Thus, we envision that the layer-by-layer assembly on the anionic brushes can be potentially used to incorporate nucleic acids onto metallic particles with high transfection efficiency.


2018 ◽  
Vol 11 (3) ◽  
pp. 80 ◽  
Author(s):  
Micaela Belleperche ◽  
Maria DeRosa

Aptamer binding has been used effectively for diagnostics, in-vivo targeting of therapeutics, and the construction and control of nanomachines. Nanostructures that respond to pH by releasing or changing affinity to a target have also been used for in vivo delivery, and in the construction of sensors and re-usable nanomachines. There are many applications that use aptamers together with pH-responsive materials, notably the targeted delivery of chemotherapeutics. However, the number of reported applications that directly use pH to control aptamer binding is small. In this review, we first discuss the use of aptamers with pH-responsive nanostructures for chemotherapeutic and other applications. We then discuss applications that use pH to denature or otherwise disrupt the binding of aptamers. Finally, we discuss motifs using non-canonical nucleic acid base pairing that can shift conformation in response to pH, followed by an overview of engineered pH-controlled aptamers designed using those motifs.


2019 ◽  
Author(s):  
Frank B. Ye ◽  
Akil Hamza ◽  
Tejomayee Singh ◽  
Stephane Flibotte ◽  
Philip Hieter ◽  
...  

ABSTRACTNew anti-cancer therapeutics require extensive in vivo characterization to identify endogenous and exogenous factors affecting efficacy, to measure toxicity and mutagenicity, and to determine genotypes resulting in therapeutic sensitivity or resistance. We used Caenorhabditis elegans as a platform with which to characterize properties of anti-cancer therapeutic agents in vivo. We generated a map of chemigenetic interactions between DNA damage response mutants and common DNA damaging agents. We used this map to investigate the properties of the new anti-cancer therapeutic CX-5461. We phenocopied the photoreactivity observed in CX-5461 clinical trials and found that CX-5461 generates reactive oxygen species when exposed to UVA radiation. We demonstrated that CX-5461 is a mutator, resulting in both large copy number variations and a high frequency of single nucleotide variations (SNVs). CX-5461-induced SNVs exhibited a distinct mutational signature. Consistent with the wide range of CX-5461-induced mutation types, we found that multiple repair pathways were needed for CX-5461 tolerance. Together, the data from C. elegans demonstrate that CX-5461 is a multimodal DNA damaging agent with strong similarity to ellipticines, a class of antineoplastic agents, and to anthracycline-based chemotherapeutics.


2020 ◽  
Vol 7 (8) ◽  
pp. 1996-2010 ◽  
Author(s):  
Stephanie J. Franks ◽  
Kate Firipis ◽  
Rita Ferreira ◽  
Katherine M. Hannan ◽  
Richard J. Williams ◽  
...  

Self-assembling peptide hydrogels can effectively transport, hold and release therapeutic molecules in a spatially and temporally controlled manner and, in doing so, improve anti-cancer drug efficacy while reducing non-specific toxicity.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 3045-3045
Author(s):  
Suk-Young Park

3045 Background: Cancer immunotherapy has been attractive for a long time with diverse clinical attempts and results. In particular, NK cells have received considerable attention because of their potential role in immune surveillance in vivo. MICA/B on tumor cells, known as the representative ligand for NKG2D receptor on NK cell, has been reported to be modulated by a variety of stresses including some chemotherapeutic agents and it is anticipated that enhancing MICA/B expression is contributory to anti-cancer treatment. With recent development of expanding autologous ex-vivo NK cell enriched lymphocytes (NKL), we designed a trial to augment the anti-cancer effect by co-administering NKL and docetaxel (D), one of the second-line agents in patients with advanced NSCLC. Methods: We first identified some chemotherapeutic agents, such as cisplatin and D, that induce peak MICA/B expression on HeLa cell during the 24-36 hours and designed a trial of combination of NKL with D administered within the same day. Eligible patients were 20-75 years old, ECOG PS 0-2, previously received one chemotherapy, and had stage IIIB/IV histologically proven NSCLC with measurable lesions. NKL were prepared and provided from NKBIO CO. Feasibility, adverse effect, and PFS were evaluated and compared with historical control of weekly D. Results: 19 patients were enrolled before early closure. NKL production and administration were feasible in all cases even with disseminated disease. No additional AE was observed in addition to that reported in D alone. PFS 3M and RR 10.5% with 2 PR were observed and similar to historical control (PFS 2.9M, RR 8.8%). Conclusions: To our knowledge, it seems to be the first report on the combination of NKL with D in patients with advanced NSCLC. Autologous NKL production and co-administration with D were feasible without further toxicity or complication. Benefit in PFS and RR, as compared with historical control, was not detected in this study population with advanced NSCLC, but further study to see whether the combination of NKL and chemotherapy has anti-cancer effect is desirable to be performed in low tumor burden state, such as less advanced or remission induced state.


2018 ◽  
Vol 36 (4_suppl) ◽  
pp. 323-323
Author(s):  
Khac Cuong Bui ◽  
Mai Ly Thi Nguyen ◽  
Samarpita Barat ◽  
Xi Chen ◽  
Vikas Bhuria ◽  
...  

323 Background: Adiponectin is the key adipokine, which plays an important role in health and disease such as obesity, diabetes, and cancer. Adiponectin is reduced in different tumor types, especially in obesity-related cancer, and recent studies showed that Adiponectin had a potential anti-cancer effect. Obesity is a risk factor for various tumor diseases including cholangiocarcinoma (CC), the second most common primary hepatic cancer. The aim of this study is to investigate for the first time the anti-cancer effect of AdipoR agonist in CC cell lines and a CC engineered mouse model. Methods: Human CC cell lines (TFK-1 and SZ-1) and CC engineered mice (Alb-Cre/KRASG12D/p53L/L) were used to investigate the anti-cancer effects of an AdipoR agonist (2-(4-Benzoylphenoxy)-N-[1-(phenylmethyl)-4-piperidinyl]-acetamide). Cell proliferation, migration, invasion, colony formation, apoptosis assay were applied to evaluate the effect of AdipoR agonist in vitro. In addition, important cancer signalling pathways and targets were analysed by Western Blot. Mice (n = 12) were treated with AdipoR or verhicle and tumor burden and survival were monitored. Results: AdipoR agonist suppressed proliferation, migration, invasion, colony formation and apoptosis in CC cells. AdipoR agonist regulated the expression of different proteins such as EMT markers, pAMPK, pSTAT3, and PARP, which have pivotal functions in cholangiocarcinogenesis. AdipoR agonist also prolonged survival time in a CC engineered mouse model. Conclusions: Our data revealed that AdipoR agonist inhibited successfully cell proliferation, migration, invasion, colony formation and apoptosis in vitro, and prolonged mice survival in vivo through regulation of crucial signaling pathways in cholangiocarcinogenesis. These results suggested that AdipoR agonist might become a new potential candidate for CC treatment in the future.


2020 ◽  
Vol 6 (47) ◽  
pp. eabc9450 ◽  
Author(s):  
Daniel Rosenblum ◽  
Anna Gutkin ◽  
Ranit Kedmi ◽  
Srinivas Ramishetti ◽  
Nuphar Veiga ◽  
...  

Harnessing CRISPR-Cas9 technology for cancer therapeutics has been hampered by low editing efficiency in tumors and potential toxicity of existing delivery systems. Here, we describe a safe and efficient lipid nanoparticle (LNP) for the delivery of Cas9 mRNA and sgRNAs that use a novel amino-ionizable lipid. A single intracerebral injection of CRISPR-LNPs against PLK1 (sgPLK1-cLNPs) into aggressive orthotopic glioblastoma enabled up to ~70% gene editing in vivo, which caused tumor cell apoptosis, inhibited tumor growth by 50%, and improved survival by 30%. To reach disseminated tumors, cLNPs were also engineered for antibody-targeted delivery. Intraperitoneal injections of EGFR-targeted sgPLK1-cLNPs caused their selective uptake into disseminated ovarian tumors, enabled up to ~80% gene editing in vivo, inhibited tumor growth, and increased survival by 80%. The ability to disrupt gene expression in vivo in tumors opens new avenues for cancer treatment and research and potential applications for targeted gene editing of noncancerous tissues.


Cancers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 222 ◽  
Author(s):  
Yusuf Haggag ◽  
Kyle Matchett ◽  
Robert Falconer ◽  
Mohammad Isreb ◽  
Jason Jones ◽  
...  

The delivery of anticancer agents to their subcellular sites of action is a significant challenge for effective cancer therapy. Peptides, which are integral to several oncogenic pathways, have significant potential to be utilised as cancer therapeutics due to their selectivity, high potency and lack of normal cell toxicity. Novel Ras protein-Regulator of chromosome condensation 1 (Ran-RCC1) inhibitory peptides designed to interact with Ran, a novel therapeutic target in breast cancer, were delivered by entrapment into polyethylene glycol-poly (lactic-co-glycolic acid) PEG-PLGA polymeric nanoparticles (NPs). A modified double emulsion solvent evaporation technique was used to optimise the physicochemical properties of these peptide-loaded biodegradable NPs. The anti-cancer activity of peptide-loaded NPs was studied in vitro using Ran-expressing metastatic breast (MDA-MB-231) and lung cancer (A549) cell lines, and in vivo using Solid Ehrlich Carcinoma-bearing mice. The anti-metastatic activity of peptide-loaded NPs was investigated using migration, invasion and colony formation assays in vitro. A PEG-PLGA-nanoparticle encapsulating N-terminal peptide showed a pronounced antitumor and anti-metastatic action in lung and breast cancer cells in vitro and caused a significant reduction of tumor volume and associated tumor growth inhibition of breast cancer model in vivo. These findings suggest that the novel inhibitory peptides encapsulated into PEGylated PLGA NPs are delivered effectively to interact and deactivate Ran. This novel Ran-targeting peptide construct shows significant potential for therapy of breast cancer and other cancers mediated by Ran overexpression.


2020 ◽  
pp. 2001261
Author(s):  
You Jung Kang ◽  
Claire K. Holley ◽  
Mohammad Reza Abidian ◽  
Achuthamangalam B. Madhankumar ◽  
James Connor ◽  
...  

Author(s):  
Girum Tefera Belachew ◽  
Bitaniya Abera Tekelemariam ◽  
Paramesh Hanumanthaiah ◽  
Fekede Meshesha Namo

Utilization of crude extracts separated from herbal medicine is getting more worthy and ideal, conceivably because of the expense of production, accessibility and availability to bring down harmful effects as much as possible. Various researches have shown that the regular use of particular soil products like fruits and vegetables can minimize the risk of a number of infections. Ginger is among the most commonly and regularly devoured dietary sauces on the planet. One of the major impactful components of ginger, 6-gingerol is suggested for the avoidance of malignancy and different maladies. As a spice and home grown medicine, the rhizome of Zingiber officinale (ginger) is devoured worldwide and it contains sharp phenolic compounds known as gingerols aggregately. The main pharmacologically-dynamic segment of ginger is 6-Gingerol. It is recognized to show a variety of organic actions including anti-cancer, anti-inflammation, and anti-oxidation. 6-Gingerol has been found to have anticancer effects by means of its impact on an assortment of natural pathways associated with apoptosis, control of cell cycle, cytotoxic action and restraint of angiogenesis. Consequently, because of its adequacy and control of different targets, just as its security for human use, 6-gingerol has gained impressive enthusiasm as an expected helpful operator for the anticipation and additionally treatment for different maladies. Taken together, this review sums up the different in vitro and in vivo pharmacological aspects of 6-gingerol and their underlying mechanisms.


Sign in / Sign up

Export Citation Format

Share Document