scholarly journals RIPK3-mediated inflammation is a conserved β cell response to ER stress

2020 ◽  
Vol 6 (51) ◽  
pp. eabd7272
Author(s):  
Bingyuan Yang ◽  
Lisette A. Maddison ◽  
Karolina E. Zaborska ◽  
Chunhua Dai ◽  
Linlin Yin ◽  
...  

Islet inflammation is an important etiopathology of type 2 diabetes; however, the underlying mechanisms are not well defined. Using complementary experimental models, we discovered RIPK3-dependent IL1B induction in β cells as an instigator of islet inflammation. In cultured β cells, ER stress activated RIPK3, leading to NF-kB–mediated proinflammatory gene expression. In a zebrafish muscle insulin resistance model, overnutrition caused islet inflammation, β cell dysfunction, and loss in an ER stress–, ripk3-, and il1b-dependent manner. In mouse islets, high-fat diet triggered the IL1B expression in β cells before macrophage recruitment in vivo, and RIPK3 inhibition suppressed palmitate-induced β cell dysfunction and Il1b expression in vitro. Furthermore, in human islets grafted in hyperglycemic mice, a marked increase in ER stress, RIPK3, and NF-kB activation in β cells were accompanied with murine macrophage infiltration. Thus, RIPK3-mediated induction of proinflammatory mediators is a conserved, previously unrecognized β cell response to metabolic stress and a mediator of the ensuing islet inflammation.


Endocrinology ◽  
2009 ◽  
Vol 150 (9) ◽  
pp. 4074-4083 ◽  
Author(s):  
Ji-Won Kim ◽  
Young-Hye You ◽  
Dong-Sik Ham ◽  
Jae-Hyoung Cho ◽  
Seung-Hyun Ko ◽  
...  

Abstract Peroxisome proliferator-activated receptor γ-coactivator-1α (PGC-1α) is significantly elevated in the islets of animal models of diabetes. However, the molecular mechanism has not been clarified. We investigated whether the suppression of PGC-1α expression protects against β-cell dysfunction in vivo and determined the mechanism of action of PGC-1α in β-cells. The studies were performed in glucolipotixicity-induced primary rat islets and INS-1 cells. In vitro and in vivo approaches using adenoviruses were used to evaluate the role of PGC-1α in glucolipotoxicity-associated β-cell dysfunction. The expression of PGC-1α in cultured β-cells increased gradually with glucolipotoxicity. The overexpression of PGC-1α also suppressed the expression of the insulin and β-cell E-box transcription factor (BETA2/NeuroD) genes, which was reversed by PGC-1α small interfering RNA (siRNA). BETA2/NeuroD, p300-enhanced BETA2/NeuroD, and insulin transcriptional activities were significantly suppressed by Ad-PGC-1α but were rescued by Ad-siPGC-1α. PGC-1α binding at the glucocorticoid receptor site on the BETA2/NeuroD promoter increased in the presence of PGC-1α. Ad-siPGC-1α injection through the celiac arteries of 90% pancreatectomized diabetic rats improved their glucose tolerance and maintained their fasting insulin levels. The suppression of PGC-1α expression protects the glucolipotoxicity-induced β-cell dysfunction in vivo and in vitro. A better understanding of the functions of molecules such as PGC-1α, which play key roles in intracellular fuel regulation, could herald a new era of the treatment of patients with type 2 diabetes mellitus by providing protection from glucolipotoxicity, which is an important cause of the development and progression of the disease.



2007 ◽  
Vol 193 (1) ◽  
pp. 65-74 ◽  
Author(s):  
Shin Tsunekawa ◽  
Naoki Yamamoto ◽  
Katsura Tsukamoto ◽  
Yuji Itoh ◽  
Yukiko Kaneko ◽  
...  

The aim of this study was to investigate the in vivo and in vitro effects of exendin-4, a potent glucagon-like peptide 1 agonist, on the protection of the pancreatic β-cells against their cell death. In in vivo experiments, we used β-cell-specific calmodulin-overexpressing mice where massive apoptosis takes place in their β-cells, and we examined the effects of chronic treatment with exendin-4. Chronic and s.c. administration of exendin-4 reduced hyperglycemia. The treatment caused significant increases of the insulin contents of the pancreas and islets, and retained the insulin-positive area. Dispersed transgenic islet cells lived only shortly, and several endoplasmic reticulum (ER) stress-related molecules such as immunoglobulin-binding protein (Bip), inositol-requiring enzyme-1α, X-box-binding protein-1 (XBP-1), RNA-activated protein kinase-like endoplasmic reticulum kinase, activating transcription factor-4, and C/EBP-homologous protein (CHOP) were more expressed in the transgenic islets. We also found that the spliced form of XBP-1, a marker of ER stress, was also increased in β-cell-specific calmodulin-overexpressing transgenic islets. In the quantitative real-time PCR analyses, the expression levels of Bip and CHOP were reduced in the islets from the transgenic mice treated with exendin-4. These findings suggest that excess of ER stress occurs in the transgenic β-cells, and the suppression of ER stress and resultant protection against cell death may be involved in the anti-diabetic effects of exendin-4.



2004 ◽  
Vol 24 (10) ◽  
pp. 4372-4383 ◽  
Author(s):  
Aihua Liu ◽  
Biva M. Desai ◽  
Doris A. Stoffers

ABSTRACT Hox factors are evolutionarily conserved homeodomain-containing transcription factors that activate and repress gene expression in a precise temporally and spatially regulated manner during development and differentiation. Pancreatic-duodenal homeobox 1 (PDX-1) is a Hox-type protein that is a critical requirement for normal pancreas development and for proper differentiation of the endocrine pancreas. In humans, PDX-1 gene mutation causes pancreatic agenesis and early- and late-onset type 2 diabetes. PDX-1 consists of an N-terminal transactivation domain, a homeodomain responsible for DNA binding and nuclear localization, and a conserved C terminus that is mutated in human diabetes but whose function is poorly understood. We have identified a novel POZ domain protein, PDX-1 C terminus-interacting factor 1 (PCIF1)/SPOP, that interacts with PDX-1 both in vitro and in vivo. PCIF1 is localized to the nucleus in a speckled pattern, and coexpression of PDX-1 alters the subnuclear distribution of PCIF1. Functionally, PCIF1 inhibits PDX-1 transactivation of established target gene promoters in a specific and dose-dependent manner that requires critical amino acids in the PDX-1 C terminus. PCIF1 is expressed in adult pancreatic insulin-producing β cells, and overexpression of PCIF1 inhibits the rat insulin 1 and rat insulin 2 promoters in the MIN6 insulinoma β cell line. The coexpression of PCIF1 with PDX-1 in β cells and the ability of PCIF1 to repress PDX-1 transactivation suggest that modulation of PDX-1 function by PCIF1 may regulate normal β cell differentiation.



2019 ◽  
Author(s):  
Sarah A. White ◽  
Lisa Zhang ◽  
Yu Hsuan Carol Yang ◽  
Dan S. Luciani

ABSTRACTER stress and apoptosis contribute to the loss of pancreatic β-cells under the pro-diabetic conditions of glucolipotoxicity. Although activation of the canonical pathway of intrinsic apoptosis is known to require Bax and Bak, their individual and combined involvement in glucolipotoxic β-cell death have not been demonstrated. It has also remained an open question if Bax and Bak in β-cells have non-apoptotic roles in mitochondrial function and ER stress signaling, as suggested in other cell types. Using mice with individual or combined β-cell deletion of Bax and Bak, we demonstrated that glucolipotoxic β-cell death in vitro happens in sequential stages; first via non-apoptotic mechanisms and later by apoptosis, which Bax and Bak were redundant in triggering. In contrast, they had non-redundant roles in mediating staurosporine-induced β-cell apoptosis. We further established that Bax and Bak do not affect normal glucose-stimulated β-cell Ca2+ responses, insulin secretion, or in vivo glucose tolerance. Finally, our experiments revealed that Bax and Bak together dampen the unfolded protein response in β-cells during the early stages of chemical- or glucolipotoxicity-induced ER stress. These findings identify novel roles of the canonical apoptosis machinery in modulating stress signals that are important for the pathobiology of β-cells in diabetes.



2014 ◽  
Vol 126 (10) ◽  
pp. 739-752 ◽  
Author(s):  
Mauricio Krause ◽  
Kevin Keane ◽  
Josianne Rodrigues-Krause ◽  
Domenico Crognale ◽  
Brendan Egan ◽  
...  

We have demonstrated a positive correlation between eHSP72 and insulin resistance, and that chronic exposure of β-cells to eHSP72 may provoke β-cell dysfunction and thus is potentially an important mediator of β-cell failure.



2020 ◽  
Vol 295 (37) ◽  
pp. 12975-12992 ◽  
Author(s):  
Xinlei Yao ◽  
Kun Li ◽  
Chen Liang ◽  
Zilong Zhou ◽  
Jiao Wang ◽  
...  

Pancreas/duodenum homeobox protein 1 (PDX1) is an important transcription factor that regulates islet β-cell proliferation, differentiation, and function. Reduced expression of PDX1 is thought to contribute to β-cell loss and dysfunction in diabetes. Thus, promoting PDX1 expression can be an effective strategy to preserve β-cell mass and function. Previously, we established a PDX1 promoter-dependent luciferase system to screen agents that can promote PDX1 expression. Natural compound tectorigenin (TG) was identified as a promising candidate that could enhance the activity of the promoter for the PDX1 gene. In this study, we first demonstrated that TG could promote the expression of PDX1 in β-cells via activating extracellular signal-related kinase (ERK), as indicated by increased phosphorylation of ERK; this effect was observed under either normal or glucotoxic/lipotoxic conditions. We then found that TG could suppress induced apoptosis and improved the viability of β-cells under glucotoxicity and lipotoxicity by activation of ERK and reduction of reactive oxygen species and endoplasmic reticulum (ER) stress. These effects held true in vivo as well: prophylactic or therapeutic use of TG could obviously inhibit ER stress and decrease islet β-cell apoptosis in the pancreas of mice given a high-fat/high-sucrose diet (HFHSD), thus dramatically maintaining or restoring β-cell mass and islet size, respectively. Accordingly, both prophylactic and therapeutic use of TG improved HFHSD-impaired glucose metabolism in mice, as evidenced by ameliorating hyperglycemia and glucose intolerance. Taken together, TG, as an agent promoting PDX1 expression exhibits strong protective effects on islet β-cells both in vitro and in vivo.



2021 ◽  
Author(s):  
Chunli Piao ◽  
Qi Zhang ◽  
Wenqi Jin ◽  
Han Wang ◽  
Cheng Tang ◽  
...  

Abstract Background: Endoplasmic reticulum stress (ERS) and excessive autophagy are increasingly recognized as risk factors associated with development and progression of β-cell dysfunction. Jiedu Tongluo Tiaogan Formula (JTTF) has known anti-glucotoxicity activities, but its pharmacological effects on pancreatic cell are not clearly understood. This study was designed to investigate JTTF effects/mechanisms on in vitro glucotoxicity (HG)-induced ERS and excessive autophagic damage of pancreatic cells in vitro and on in vivo pancreatic injury in db/db mice. Methods: The chemical composition of a JTTF preparation were analyzed using high-performance liquid chromatographic fingerprinting. Meanwhile, cell viability, glucose-stimulated insulin secretion, insulin biosynthesis dysfunction, Ca2+ overload, ERS and excessive autophagy were assessed in JTTF-pretreated pancreatic β-cells with HG-induced injury. Hematoxylin and eosin staining and immunohistochemical analyses of pancreatic tissues revealed effects of in vivo JTTF pretreatment on development of HG-induced pancreatic injury in db/db mice. Results: Five JTTF chemical components were identified. Our results revealed that JTTF treatment protected β-cells from HG injury by increasing insulin biosynthesis and glucose-stimulated insulin secretion (GSIS), while also decreasing Ca2+ overload, ERS and excessive autophagy. Furthermore, protective effects of JTTF treatment against HG-induced β-cell ERS and excessive autophagy were linked to regulation of CaMKKβ/AMPK pathway functions, while JTTF administration as confirmed to reverse pancreatic injury in db/db mice. Conclusions: Collectively, the results presented here indicate that JTTF may prevent islet cell dysfunction in T2DM mice by inhibiting CaMKKβ/AMPK pathway-mediated ERS and excessive autophagy. These findings enhance our understanding of mechanisms underlying beneficial JTTF-induced amelioration of T2DM.



2015 ◽  
Vol 35 (6) ◽  
pp. 2135-2148 ◽  
Author(s):  
Shutong Zhou ◽  
Dongni Yu ◽  
Shangyong Ning ◽  
Heli Zhang ◽  
Lei Jiang ◽  
...  

Background: The aim of this study was to clarify the relationship among Rac1 expression and activation, oxidative stress and β cell dysfunction in obesity. Methods: In vivo, serum levels of glucose, insulin, oxidative stress markers and Rac1 expression were compared between ob/ob mice and C57BL/6J controls. Then, these variables were rechecked after the administration of the specific Rac1 inhibitor-NSC23766 in ob/ob mice. In vitro, NIT-1 β cells were cultured in a hyperglycemic and/or hyperlipidemic state with or without NSC23766, and the differences of Rac1 expression and translocation, NADPH oxidase(Nox) enzyme activity, reactive oxygen species (ROS) and insulin mRNA were observed. Results: ob/ob mice displayed abnormal glycometabolism, oxidative stress and excessive expression of Rac1 in the pancreas. NSC23766 injection inhibited the expression of Rac1 in the pancreas, along with amelioration of oxidative stress and glycometabolism in obese mice. Under hyperglycemic and/or hyperlipidemic conditions, Rac1 translocated to the cellular membrane, induced activation of the NADPH oxidase enzyme and oxidative stress, and simultaneously reduced the insulin mRNA expression in NIT-1 β cells. Inhibiting Rac1 activity could alleviate oxidative stress and meliorate the decline of insulin mRNA in β cells. Conclusions: Rac1 might contribute to oxidative stress systemically and locally in the pancreas in obesity. The excessive activation and expression of Rac1 in obesity were associated with β cell dysfunction through ROS production.



Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 264
Author(s):  
Seon-Heui Cha ◽  
Chunying Zhang ◽  
Soo-Jin Heo ◽  
Hee-Sook Jun

Pancreatic β-cell loss is critical in diabetes pathogenesis. Up to now, no effective treatment has become available for β-cell loss. A polyphenol recently isolated from Polysiphonia japonica, 5-Bromoprotocatechualdehyde (BPCA), is considered as a potential compound for the protection of β-cells. In this study, we examined palmitate (PA)-induced lipotoxicity in Ins-1 cells to test the protective effects of BPCA on insulin-secreting β-cells. Our results demonstrated that BPCA can protect β-cells from PA-induced lipotoxicity by reducing cellular damage, preventing reactive oxygen species (ROS) overproduction, and enhancing glucose-stimulated insulin secretion (GSIS). BPCA also improved mitochondrial morphology by preserving parkin protein expression. Moreover, BPCA exhibited a protective effect against PA-induced β-cell dysfunction in vivo in a zebrafish model. Our results provide strong evidence that BPCA could be a potential therapeutic agent for the management of diabetes.



2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Dror Sever ◽  
Anat Hershko-Moshe ◽  
Rohit Srivastava ◽  
Roy Eldor ◽  
Daniel Hibsher ◽  
...  

AbstractNF-κB is a well-characterized transcription factor, widely known for its roles in inflammation and immune responses, as well as in control of cell division and apoptosis. However, its function in β-cells is still being debated, as it appears to depend on the timing and kinetics of its activation. To elucidate the temporal role of NF-κB in vivo, we have generated two transgenic mouse models, the ToIβ and NOD/ToIβ mice, in which NF-κB activation is specifically and conditionally inhibited in β-cells. In this study, we present a novel function of the canonical NF-κB pathway during murine islet β-cell development. Interestingly, inhibiting the NF-κB pathway in β-cells during embryogenesis, but not after birth, in both ToIβ and NOD/ToIβ mice, increased β-cell turnover, ultimately resulting in a reduced β-cell mass. On the NOD background, this was associated with a marked increase in insulitis and diabetes incidence. While a robust nuclear immunoreactivity of the NF-κB p65-subunit was found in neonatal β-cells, significant activation was not detected in β-cells of either adult NOD/ToIβ mice or in the pancreata of recently diagnosed adult T1D patients. Moreover, in NOD/ToIβ mice, inhibiting NF-κB post-weaning had no effect on the development of diabetes or β-cell dysfunction. In conclusion, our data point to NF-κB as an important component of the physiological regulatory circuit that controls the balance of β-cell proliferation and apoptosis in the early developmental stages of insulin-producing cells, thus modulating β-cell mass and the development of diabetes in the mouse model of T1D.



Sign in / Sign up

Export Citation Format

Share Document