Abstract 175: The Role of Axl in Accumulation of Immune Cells in Kidney and the Onset of Hypertension

Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Sri Nagarjun Batchu ◽  
Angie Hughson ◽  
Janice Gerloff ◽  
Deborah J Fowell ◽  
Vyacheslav A Korshunov

Introduction: Gas6/Axl pathway contributes to elevation of blood pressure. Immune cells are implicated in initiation and maintenance of hypertension. In this study we aimed to investigate the role of Axl in immune cells on kidney injury and initiation of hypertension. Methods and Results: Deoxycorticosterone-acetate (DOCA; 75mg, 60days release) and salt hypertension was induced for 1wk or 6wks in four groups of Axl chimeras (n=4-5) that were generated by bone marrow (BM) transplant. Multi parameter flow cytometry was used to quantify five major immune cell subsets in digested kidneys from Axl chimeras. Systolic blood pressure (SBP) increased by 30mmHg in Axl+/+ →Axl+/+, Axl-/- →Axl-/- and Axl+/+ →Axl-/- mice after 1wk of DOCA-salt. However, chimeras that lack Axl in the BM cells (Axl-/- →Axl+/+) showed reduction in early increase in SBP (16+2mmHg). We observed a significant decrease in urine protein levels in Axl-/- →Axl+/+ (0.3+0.1μg/μl) compared to other Axl chimeras (∼0.7μg/μl) after 1wk of DOCA-salt. Kidney glomeruli areas were reduced in Axl-/- →Axl+/+ (4,143+229μm 2 ) compared to other Axl chimeras (∼6,000μm 2 ) after 6wks of DOCA-salt. Kidneys from Axl-/- →Axl-/- showed an increase in total leukocytes (8 vs. 4%), B cells (29 vs. 12%) and decrease in monocytes/macrophages (16 vs. 22%) and dendritic cells (5 vs. 10%) compared to Axl+/+ →Axl+/+. Moreover, Axl-/- →Axl+/+ showed further increase in leukocytes (17%), B (39%) and dendritic (13%) cells in kidneys compared to other Axl chimeras. In addition a small percentage of wild type T cells was increased in the kidneys from Axl-/- →Axl+/+ chimeras. Conclusions: These findings suggest that Axl expression in BM-derived cells is critical for kidney injury in DOCA-salt hypertension. Axl-dependent pathways regulate immune cell populations in the kidneys during initiation of hypertension. This study was supported by HL105623 grant (VAK)

Open Biology ◽  
2017 ◽  
Vol 7 (4) ◽  
pp. 170006 ◽  
Author(s):  
B. Calì ◽  
B. Molon ◽  
A. Viola

Host immunity plays a central and complex role in dictating tumour progression. Solid tumours are commonly infiltrated by a large number of immune cells that dynamically interact with the surrounding microenvironment. At first, innate and adaptive immune cells successfully cooperate to eradicate microcolonies of transformed cells. Concomitantly, surviving tumour clones start to proliferate and harness immune responses by specifically hijacking anti-tumour effector mechanisms and fostering the accumulation of immunosuppressive immune cell subsets at the tumour site. This pliable interplay between immune and malignant cells is a relentless process that has been concisely organized in three different phases: elimination, equilibrium and escape. In this review, we aim to depict the distinct immune cell subsets and immune-mediated responses characterizing the tumour landscape throughout the three interconnected phases. Importantly, the identification of key immune players and molecules involved in the dynamic crosstalk between tumour and immune system has been crucial for the introduction of reliable prognostic factors and effective therapeutic protocols against cancers.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yuanbo Wu ◽  
Changlong An ◽  
Xiaogao Jin ◽  
Zhaoyong Hu ◽  
Yanlin Wang

AbstractCirculating cells have a pathogenic role in the development of hypertensive nephropathy. However, how these cells infiltrate into the kidney are not fully elucidated. In this study, we investigated the role of CXCR6 in deoxycorticosterone acetate (DOCA)/salt-induced inflammation and fibrosis of the kidney. Following uninephrectomy, wild-type and CXCR6 knockout mice were treated with DOCA/salt for 3 weeks. Blood pressure was similar between wild-type and CXCR6 knockout mice at baseline and after treatment with DOCA/salt. Wild-type mice develop significant kidney injury, proteinuria, and kidney fibrosis after three weeks of DOCA/salt treatment. CXCR6 deficiency ameliorated kidney injury, proteinuria, and kidney fibrosis following treatment with DOCA/salt. Moreover, CXCR6 deficiency inhibited accumulation of bone marrow–derived fibroblasts and myofibroblasts in the kidney following treatment with DOCA/salt. Furthermore, CXCR6 deficiency markedly reduced the number of macrophages and T cells in the kidney after DOCA/salt treatment. In summary, our results identify a critical role of CXCR6 in the development of inflammation and fibrosis of the kidney in salt-sensitive hypertension.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Anila Duni ◽  
Olga Balafa ◽  
George Vartholomatos ◽  
Margarita Oikonomou ◽  
Paraskevi Tseke ◽  
...  

Abstract Background and Aims Advanced chronic kidney disease (CKD) is characterized by elevated expression of the proinflammatory and pro-atherogenic CD14++CD16+ monocytes subset. The role of lymphocyte subpopulations including natural killer (NK) cells and CD4+CD25+ regulatory T cells (Tregs) in the modulation of inflammation and immunity and subsequent cardiovascular implications have received increasing attention. The role of immune cell subpopulations remains to be determined in peritoneal dialysis (PD) patients. The aim of this pilot study was to investigate potential correlations between blood levels of CD14++CD16+ monocytes, NK cells and Tregs with phenotypes of established cardiovascular disease (CVD), including coronary artery disease (CAD) and heart failure (HF) in a cohort of PD patients. Method 29 stable PD patients (mean age 66.96 years ±14.5, 62% males) were enrolled. Exclusion criteria were a history of malignancy, autoimmune disease, active or chronic infections and a recent (< 3 months) cardiovascular event. Demographic, laboratory and bioimpedance measurements data (overhydration, extracellular and total body water and their ratios) were collected. The analysis of peripheral blood immune cell subsets was performed using flow cytometry (FC). Additionally, in 7 PD patients the distribution of the immune cells was evaluated by FC at two time points: T0 (before initiation of PD - CKD stage G5) and T1 (after PD start). Results The median dialysis vintage was 34.5 (range 3.2-141) months. Overall, PD patients had 527 ± 199 monocytes and 1731 ± 489 lymphocytes while mean percentage of CD14++CD16+ monocytes was 9.3 ±6.36% (normal range 2-8%), NK cells 16.6±10.3% (normal range 5-15%) and Tregs 2.1±1.76% (normal range 1-3%). There was no correlation of either of these cell subpopulations with age, PD vintage, inflammation markers (CRP, fibrinogen, albumin, hsTroponin-I), overhydration markers or comorbidities. Only increased NK cells were associated with the presence of HF in PD (24.87 vs 14.92%, p 0.047). In multiple regression analysis, NK cells levels were strongly associated with the presence of edema (beta coef=13.7, p<0.001) and CAD (beta coef=7.1, p=0.046). At T0 mean percentage of CD14++CD16+ monocytes, NK cells and Tregs were 9.7 ±4.5%, 17.1 ±3.84% and 2.38± 1.26% respectively whereas at T1 mean percentage of CD14++CD16+ monocytes was 13.3% ±8.4, NK cells 19.8±6.47% and Tregs 1.5±0.6%. Paired t-test of cell subpopulations (T0 vs T1) showed that only the Tregs were significantly decreased (p =0.018), while the other subpopulations did not differ and remained increased. Conclusion Our study is the first to evaluate the potential association between specific immune cell subsets and cardiovascular disease in long-term PD patients. Increased NK cells levels directly correlate both with the presence of HF and CAD in PD patients. Longitudinal results suggest that CD14++CD16+ and NK cells remain increased after PD start, while Tregs decrease further. The state of pro-inflammation and immune deregulation appear to persist after initiating PD. Future research is required to evaluate the role of immune cells subsets as potential tools to identify patients who are at the highest risk for complications and to guide interventions that may improve clinical outcomes.


Author(s):  
Josephine Herz ◽  
Ivo Bendix ◽  
Ursula Felderhoff-Müser

Abstract Perinatal brain injury is the leading cause of neurological mortality and morbidity in childhood ranging from motor and cognitive impairment to behavioural and neuropsychiatric disorders. Various noxious stimuli, including perinatal inflammation, chronic and acute hypoxia, hyperoxia, stress and drug exposure contribute to the pathogenesis. Among a variety of pathological phenomena, the unique developing immune system plays an important role in the understanding of mechanisms of injury to the immature brain. Neuroinflammation following a perinatal insult largely contributes to evolution of damage to resident brain cells, but may also be beneficial for repair activities. The present review will focus on the role of peripheral immune cells and discuss processes involved in neuroinflammation under two frequent perinatal conditions, systemic infection/inflammation associated with encephalopathy of prematurity (EoP) and hypoxia/ischaemia in the context of neonatal encephalopathy (NE) and stroke at term. Different immune cell subsets in perinatal brain injury including their infiltration routes will be reviewed and critical aspects such as sex differences and maturational stage will be discussed. Interactions with existing regenerative therapies such as stem cells and also potentials to develop novel immunomodulatory targets are considered. Impact Comprehensive summary of current knowledge on the role of different immune cell subsets in perinatal brain injury including discussion of critical aspects to be considered for development of immunomodulatory therapies.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Robin Ray ◽  
Min Zhang ◽  
Alison C Brewer ◽  
Ajay M Shah

NADPH oxidases (Noxs) are major sources of reactive oxygen species (ROS) that are involved in the pathophysiology of several cardiovascular disorders. Of the 5 Nox isoforms identified to date, Nox2 and Nox4 are the main isoforms expressed in the endothelium. Whereas Nox2 has been implicated in the genesis of endothelial dysfunction, the role of Nox4 remains unclear. Interestingly, the activation mechanisms of Nox2 and Nox4 appear to be distinct. To specifically examine the function of endothelial Nox4 in vivo , we generated transgenic mice with endothelial-targeted overexpression of Nox4 using a Tie2 promoter construct. Nox4 transgenic mice (TG) backcrossed onto a C57BL/6J background had increased Nox4 mRNA in endothelial-rich tissues and in isolated coronary microvascular endothelial cells (CMEC) compared to wild-type littermates (WT) (2-fold increase in CMEC; p<0.001). Aortic Nox4 protein levels were 3-fold higher in TG compared to WT. CMEC isolated from TG mice had increased NADPH-dependent superoxide production compared to WT (237.6 ± 2.7 vs. 186.5 ± 7.1 integrated RLU; n = 3, p<0.01) as well as increased H 2 O 2 production (7.60 ± 0.70 vs. 3.22 ± 0.42 μM H 2 O 2 /105 cells; n=3, p<0.01). No changes were detected in mRNA expression of SOD1, SOD2, SOD3, catalase or eNOS in aorta of TG compared to WT mice. Isolated aortic rings from TG mice exhibited enhanced endothelial-dependent vasorelaxation to cumulative addition of acetylcholine compared to WT (−log EC 50 7.76 ± 0.07 vs. 7.20 ± 0.05; n =12, p<0.001), a difference that was abolished by catalase (1500 units/ml). There was no difference in endothelial-independent responses to sodium nitroprusside (−log EC 50 8.57 ± 0.11 vs. 8.54 ± 0.09; n = 12, p = NS). In vivo blood pressure measured both by tail-cuff plethysmography and ambulatory telemetry was significantly lower in TG compared to WT (systolic 117.4 ± 1.9 vs. 125.5 ± 2.1 mmHg and diastolic 90.1 ± 2.0 vs. 98.1 ± 2.1 mmHg by telemetry; n =5, p<0.05). These results indicate that modest endothelium-targeted overexpression of Nox4 in vivo enhances endothelium-dependent relaxation and reduces blood pressure, probably through increased generation of H 2 O 2 . These in vivo effects are quite distinct from those that have been found with Nox2 overexpression.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Joseph A. C. Delaney ◽  
Nels C. Olson ◽  
Colleen M. Sitlani ◽  
Alison E. Fohner ◽  
Sally A. Huber ◽  
...  

Abstract Background Hypertension is a major source of cardiovascular morbidity and mortality. Recent evidence from mouse models, genetic, and cross-sectional human studies suggest increased proportions of selected immune cell subsets may be associated with levels of systolic blood pressure (SBP). Methods We assayed immune cells from cryopreserved samples collected at the baseline examination (2000–2002) from 1195 participants from the multi-ethnic study of atherosclerosis (MESA). We used linear mixed models, with adjustment for age, sex, race/ethnicity, smoking, exercise, body mass index, education, diabetes, and cytomegalovirus titers, to estimate the associations between 30 immune cell subsets (4 of which were a priori hypotheses) and repeated measures of SBP (baseline and up to four follow-up measures) over 10 years. The analysis provides estimates of the association with blood pressure level. Results The mean age of the MESA participants at baseline was 64 ± 10 years and 53% were male. A one standard deviation (1-SD) increment in the proportion of γδ T cells was associated with 2.40 mmHg [95% confidence interval (CI) 1.34–3.42] higher average systolic blood pressure; and for natural killer cells, a 1-SD increment was associated with 1.88 mmHg (95% CI 0.82–2.94) higher average level of systolic blood pressure. A 1-SD increment in classical monocytes (CD14++CD16−) was associated with 2.01 mmHG (95% CI 0.79–3.24) lower average systolic blood pressure. There were no associations of CD4+ T helper cell subsets with average systolic blood pressure. Conclusion These findings suggest that the innate immune system plays a role in levels of SBP whereas there were no associations with adaptive immune cells.


2015 ◽  
Vol 308 (10) ◽  
pp. F1041-F1046 ◽  
Author(s):  
Marc Weidenbusch ◽  
Severin Rodler ◽  
Hans-Joachim Anders

Interleukins have become well-known regulators of innate and adaptive immunity-related tissue inflammation. Recently, IL-22 has gained a lot of interest for its unique functions in maintaining and regaining epithelial integrity. IL-22 is exclusively secreted by different immune cell subsets, while IL-22 receptors are mainly expressed by epithelial cells. As the kidney is largely an epithelial organ, the functional role of IL-22 in the kidney deserves to be explored in detail. Here, we briefly summarize the key features of IL-22 biology and review the available data on its expression and functional roles in kidney injury and kidney regeneration. Furthermore, we provide suggestions on how to explore this evolving field in the future.


2009 ◽  
Vol 297 (6) ◽  
pp. R1742-R1748 ◽  
Author(s):  
LaShon C. Sturgis ◽  
Joseph G. Cannon ◽  
Derek A. Schreihofer ◽  
Michael W. Brands

Knockout (KO) of IL-6 has been shown to attenuate ANG II hypertension, and mineralocorticoid receptors (MR) have been reported to contribute to the increase in IL-6 during acute ANG II infusion. This study determined whether that MR action is sustained with chronic ANG II infusion and whether it plays a role in mediating ANG II hypertension. ANG II infusion (90 ng/min) increased plasma IL-6 from 1.6 ± 0.6 to 22.7 ± 2.2 and 19.9 ± 3.2 pg/ml on days 7 and 14, respectively, and chronic MR blockade with spironolactone attenuated that only at day 7 (7.2 ± 2.2 pg/ml). ANG II increased MAP (19 h/day with telemetry) ∼40 mmHg, but in ANG II+spironolactone mice (25 or 50 mg·kg−1·day−1), mean arterial pressure (MAP) was not significantly different despite a tendency for lower pressure the first 6 days. To isolate further the mineralocorticoid link to IL-6 and blood pressure, DOCA-salt hypertension was induced in IL-6 KO and wild-type (WT) mice. Plasma IL-6 increased from 4.1 ± 1.7 to 34.5 ± 7.0 pg/ml by day 7 of DOCA treatment in the WT mice but was back to control levels by day 14. An IL-6 bioassay using the murine B9, B-cell hybridoma cell line demonstrated that plasma IL-6 measurements reflected actual IL-6 bioactivity. The hypertension was not different and virtually superimposable in WT vs. IL-6 KO mice, averaging 145 ± 2 and 144 ± 3 mmHg, respectively. Both experiments confirm chronic stimulation of IL-6 by mineralocorticoids but show that it is transient. In addition, IL-6 was not required for mineralocorticoid hypertension. This suggests that aldosterone contributes to the increase in plasma IL-6 in the early stage of ANG II hypertension but that the blood pressure actions of IL-6 in that model are linked most likely to ANG II rather than aldosterone.


2018 ◽  
Vol 19 (10) ◽  
pp. 2885 ◽  
Author(s):  
Alessandra Gentilini ◽  
Mirella Pastore ◽  
Fabio Marra ◽  
Chiara Raggi

Cholangiocarcinoma (CCA) is a severe and mostly intractable adenocarcinoma of biliary epithelial cells. A typical feature of CCA is its highly desmoplastic microenvironment containing fibrogenic connective tissue and an abundance of immune cells (T lymphocytes, Natural Killer (NK) cells, and macrophages) infiltrating tumor epithelium. This strong desmoplasia is orchestrated by various soluble factors and signals, suggesting a critical role in shaping a tumor growth-permissive microenvironment that is responsible for CCA poor clinical outcome. Indeed stroma not only provides an abundance of factors that facilitate CCA initiation, growth and progression, but also a prejudicial impact on therapeutic outcome. This review will give an overview of tumor-stroma signaling in a microenvironment critically regulating CCA development and progression. Identification of CCA secreted factors by both the fibroblast component and immune cell subsets might provide ample opportunities for pharmacological targeting of this type of cancer.


Sign in / Sign up

Export Citation Format

Share Document