scholarly journals Coral microbiome manipulation elicits metabolic and genetic restructuring to mitigate heat stress and evade mortality

2021 ◽  
Vol 7 (33) ◽  
pp. eabg3088
Author(s):  
Erika P. Santoro ◽  
Ricardo M. Borges ◽  
Josh L. Espinoza ◽  
Marcelo Freire ◽  
Camila S. M. A. Messias ◽  
...  

Beneficial microorganisms for corals (BMCs) ameliorate environmental stress, but whether they can prevent mortality and the underlying host response mechanisms remains elusive. Here, we conducted omics analyses on the coral Mussismilia hispida exposed to bleaching conditions in a long-term mesocosm experiment and inoculated with a selected BMC consortium or a saline solution placebo. All corals were affected by heat stress, but the observed “post-heat stress disorder” was mitigated by BMCs, signified by patterns of dimethylsulfoniopropionate degradation, lipid maintenance, and coral host transcriptional reprogramming of cellular restructuration, repair, stress protection, and immune genes, concomitant with a 40% survival rate increase and stable photosynthetic performance by the endosymbiotic algae. This study provides insights into the responses that underlie probiotic host manipulation. We demonstrate that BMCs trigger a dynamic microbiome restructuring process that instigates genetic and metabolic alterations in the coral host that eventually mitigate coral bleaching and mortality.

2021 ◽  
Vol 19 (1) ◽  
pp. 44-57
Author(s):  
Sirine Werghi ◽  
Charfeddine Gharsallah ◽  
Nishi Kant Bhardwaj ◽  
Hatem Fakhfakh ◽  
Faten Gorsane

AbstractDuring recent decades, global warming has intensified, altering crop growth, development and survival. To overcome changes in their environment, plants undergo transcriptional reprogramming to activate stress response strategies/pathways. To evaluate the genetic bases of the response to heat stress, Conserved DNA-derived Polymorphism (CDDP) markers were applied across tomato genome of eight cultivars. Despite scattered genotypes, cluster analysis allowed two neighbouring panels to be discriminate. Tomato CDDP-genotypic and visual phenotypic assortment permitted the selection of two contrasting heat-tolerant and heat-sensitive cultivars. Further analysis explored differential expression in transcript levels of genes, encoding heat shock transcription factors (HSFs, HsfA1, HsfA2, HsfB1), members of the heat shock protein (HSP) family (HSP101, HSP17, HSP90) and ascorbate peroxidase (APX) enzymes (APX1, APX2). Based on discriminating CDDP-markers, a protein functional network was built allowing prediction of candidate genes and their regulating miRNA. Expression patterns analysis revealed that miR156d and miR397 were heat-responsive showing a typical inverse relation with the abundance of their target gene transcripts. Heat stress is inducing a set of candidate genes, whose expression seems to be modulated through a complex regulatory network. Integrating genetic resource data is required for identifying valuable tomato genotypes that can be considered in marker-assisted breeding programmes to improve tomato heat tolerance.


Coral Reefs ◽  
2021 ◽  
Author(s):  
Liam Lachs ◽  
Brigitte Sommer ◽  
James Cant ◽  
Jessica M. Hodge ◽  
Hamish A. Malcolm ◽  
...  

AbstractAnthropocene coral reefs are faced with increasingly severe marine heatwaves and mass coral bleaching mortality events. The ensuing demographic changes to coral assemblages can have long-term impacts on reef community organisation. Thus, understanding the dynamics of subtropical scleractinian coral populations is essential to predict their recovery or extinction post-disturbance. Here we present a 10-yr demographic assessment of a subtropical endemic coral, Pocillopora aliciae (Schmidt-Roach et al. in Zootaxa 3626:576–582, 2013) from the Solitary Islands Marine Park, eastern Australia, paired with long-term temperature records. These coral populations are regularly affected by storms, undergo seasonal thermal variability, and are increasingly impacted by severe marine heatwaves. We examined the demographic processes governing the persistence of these populations using inference from size-frequency distributions based on log-transformed planar area measurements of 7196 coral colonies. Specifically, the size-frequency distribution mean, coefficient of variation, skewness, kurtosis, and coral density were applied to describe population dynamics. Generalised Linear Mixed Effects Models were used to determine temporal trends and test demographic responses to heat stress. Temporal variation in size-frequency distributions revealed various population processes, from recruitment pulses and cohort growth, to bleaching impacts and temperature dependencies. Sporadic recruitment pulses likely support population persistence, illustrated in 2010 by strong positively skewed size-frequency distributions and the highest density of juvenile corals measured during the study. Increasing mean colony size over the following 6 yr indicates further cohort growth of these recruits. Severe heat stress in 2016 resulted in mass bleaching mortality and a 51% decline in coral density. Moderate heat stress in the following years was associated with suppressed P. aliciae recruitment and a lack of early recovery, marked by an exponential decrease of juvenile density (i.e. recruitment) with increasing heat stress. Here, population reliance on sporadic recruitment and susceptibility to heat stress underpin the vulnerability of subtropical coral assemblages to climate change.


2021 ◽  
pp. 102876
Author(s):  
Maria Emilia Fernandez ◽  
Maria Carla Labaque ◽  
Gabriel Orso ◽  
Raúl Hector Marin ◽  
Jackelyn Melissa Kembro

Author(s):  
Kazuho Isono ◽  
Ryo Tsukimoto ◽  
Satoshi Iuchi ◽  
Akihisa Shinozawa ◽  
Izumi Yotsui ◽  
...  

Abstract Plants are often exposed not only to short-term (S-) heat stress but also to diurnal long-term (L-) heat stress over several consecutive days. To reveal the mechanisms underlying L-heat stress tolerance, we here used a forward genetic screening for sensitive to long-term heat (sloh) mutants and isolated sloh4. The mutant was hypersensitive to L- but not S-heat stress. The causal gene of sloh4 was identical to MIP3 encoding a member of the MAIGO2 (MAG2) tethering complex, which is composed of the MAG2, MIP1, MIP2, and MIP3 subunits and is localized at the endoplasmic reticulum (ER) membrane. Although sloh4/mip3 was hypersensitive to L-heat stress, the sensitivity of the mag2-3 and mip1–1 mutants was similar to that of the wild type. Under L-heat stress, the ER stress and the following unfolded protein response (UPR) were more pronounced in sloh4 than in the wild type. Transcript levels of bZIP60-regulated UPR genes were strongly increased in sloh4 under L-heat stress. Two processes known to be mediated by INOSITOL REQUIRING ENZYME1 (IRE1)—accumulation of the spliced bZIP60 transcript and a decrease in the transcript levels of PR4 and PRX34, encoding secretory proteins—were observed in sloh4 in response to L-heat stress. These findings suggest that misfolded proteins generated in sloh4 under L-heat stress may be recognized by IRE1 but not bZIP28, resulting in initiation of the UPR via activated bZIP60. Therefore, it would be possible that only MIP3 in MAG2 complex has an additional function in L-heat tolerance, which is not related to the ER–Golgi vesicle tethering.


Zygote ◽  
2019 ◽  
Vol 27 (6) ◽  
pp. 432-435
Author(s):  
Thais Rose dos Santos Hamilton ◽  
Gabriela Esteves Duarte ◽  
José Antonio Visintin ◽  
Mayra Elena Ortiz D’Ávila Assumpção

SummaryLong-term heat stress (HS) induced by testicular insulation generates oxidative stress (OS) on the testicular environment; consequently activating antioxidant enzymes such as superoxide dismutase (SOD), glutathione reductase (GR) and glutathione peroxidase (GPx). The aim of this work was to immunolocalize antioxidant enzymes present in different cells within the seminiferous tubule when rams were submitted to HS. Rams were divided into control (n = 6) and treated group (n = 6), comprising rams subjected to testicular insulation for 240 h. After the testicular insulation period, rams were subjected to orchiectomy. Testicular fragments were submitted to immunohistochemistry for staining against SOD, GR and GPx enzymes. We observed immunolocalization of GPx in more cell types of the testis after HS and when compared with other enzymes. In conclusion, GPx is the main antioxidant enzyme identified in testicular cells in an attempt to maintain oxidative balance when HS occurs.


2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Shavin Chandrasiri ◽  
Andre Nelson ◽  
Adam Storey ◽  
Andrew Garnham ◽  
Helen Hadiyan ◽  
...  

2019 ◽  
Vol 286 (1896) ◽  
pp. 20182444 ◽  
Author(s):  
Isabelle Taubner ◽  
Marian Y. Hu ◽  
Anton Eisenhauer ◽  
Markus Bleich

Light has been demonstrated to enhance calcification rates in hermatypic coral species. To date, it remains unresolved whether calcifying epithelia change their ion transport activity during illumination, and whether such a process is mediated by the endosymbiotic algae or can be controlled by the coral host itself. Using a modified Ussing chamber in combination with H + sensitive microelectrode measurements, the present work demonstrates that light triggers the generation of a skeleton positive potential of up to 0.9 mV in the hermatypic coral Stylophora pistillata . This potential is generated by a net flux of cations towards the skeleton and reaches its maximum at blue (450 nm) light. The effects of pharmacological inhibitors targeting photosynthesis 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and anion transport 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) were investigated by pH microelectrode measurements in coral tissues demonstrating a rapid decrease in tissue pH under illumination. However, these inhibitors showed no effect on the electrophysiological light response of the coral host. By contrast, metabolic inhibition by cyanide and deoxyglucose reversibly inhibited the light-induced cation flux towards the skeleton. These results suggest that ion transport across coral epithelia is directly triggered by blue light, independent of photosynthetic activity of algal endosymbionts. Measurements of this very specific and quantifiable physiological response can provide parameters to identify photoreception mechanisms and will help to broaden our understanding of the mechanistic link between light stimulation and epithelial ion transport, potentially relevant for calcification in hermatypic corals.


Sign in / Sign up

Export Citation Format

Share Document