scholarly journals Biomaterials with structural hierarchy and controlled 3D nanotopography guide endogenous bone regeneration

2021 ◽  
Vol 7 (31) ◽  
pp. eabg3089
Author(s):  
Shixuan Chen ◽  
Hongjun Wang ◽  
Valerio Luca Mainardi ◽  
Giuseppe Talò ◽  
Alec McCarthy ◽  
...  

Biomaterials without exogenous cells or therapeutic agents often fail to achieve rapid endogenous bone regeneration with high quality. Here, we reported a class of three-dimensional (3D) nanofiber scaffolds with hierarchical structure and controlled alignment for effective endogenous cranial bone regeneration. 3D scaffolds consisting of radially aligned nanofibers guided and promoted the migration of bone marrow stem cells from the surrounding region to the center in vitro. These scaffolds showed the highest new bone volume, surface coverage, and mineral density among the tested groups in vivo. The regenerated bone exhibited a radially aligned fashion, closely recapitulating the scaffold’s architecture. The organic phase in regenerated bone showed an aligned, layered, and densely packed structure, while the inorganic mineral phase showed a uniform distribution with smaller pore size and an even distribution of stress upon the simulated compression. We expect that this study will inspire the design of next-generation biomaterials for effective endogenous bone regeneration with desired quality.

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3207
Author(s):  
Kumaresan Sakthiabirami ◽  
Vaiyapuri Soundharrajan ◽  
Jin-Ho Kang ◽  
Yunzhi Peter Yang ◽  
Sang-Won Park

The design of zirconia-based scaffolds using conventional techniques for bone-regeneration applications has been studied extensively. Similar to dental applications, the use of three-dimensional (3D) zirconia-based ceramics for bone tissue engineering (BTE) has recently attracted considerable attention because of their high mechanical strength and biocompatibility. However, techniques to fabricate zirconia-based scaffolds for bone regeneration are in a stage of infancy. Hence, the biological activities of zirconia-based ceramics for bone-regeneration applications have not been fully investigated, in contrast to the well-established calcium phosphate-based ceramics for bone-regeneration applications. This paper outlines recent research developments and challenges concerning numerous three-dimensional (3D) zirconia-based scaffolds and reviews the associated fundamental fabrication techniques, key 3D fabrication developments and practical encounters to identify the optimal 3D fabrication technique for obtaining 3D zirconia-based scaffolds suitable for real-world applications. This review mainly summarized the articles that focused on in vitro and in vivo studies along with the fundamental mechanical characterizations on the 3D zirconia-based scaffolds.


Nanomaterials ◽  
2017 ◽  
Vol 7 (2) ◽  
pp. 46 ◽  
Author(s):  
Manabu Tanaka ◽  
Yoshinori Sato ◽  
Mei Zhang ◽  
Hisao Haniu ◽  
Masanori Okamoto ◽  
...  

2021 ◽  
Author(s):  
Sajad Bahrami ◽  
Nafiseh Baheiraei ◽  
Mostafa Shahrezaee

Abstract Variety of bone-related diseases and injures and limitations of traditional regeneration methods need to introduce new tissue substitutes. Tissue engineering and regeneration combined with nanomedicine can provide different natural or synthetic and combined scaffolds with bone mimicking properties for implant in the injured area. In this study, we synthesized collagen (Col) and reduced graphene oxide coated collagen (Col-rGO) scaffolds and evaluated their in vitro and in vivo effects on bone tissue repair. Col and Col-rGO scaffolds were synthesized by chemical crosslinking and freeze-drying methods. The surface topography, mechanical and chemical properties of scaffolds were characterized and showed three-dimensional (3D) porous scaffolds and successful coating of rGO on Col. rGO coating enhanced mechanical strength of Col-rGO scaffolds compared with Col scaffolds by 2.8 folds. Furthermore, Col-rGO scaffolds confirmed that graphene addition not only did not any cytotoxic effects but also enhanced human bone marrow-derived mesenchymal stem cells (hBMSCs) viability and proliferation with 3D adherence and expansion. Finally, scaffolds implantation into rabbit cranial bone defect for 12 weeks showed increased bone formation, confirmed by Hematoxylin-Eosin (H&E) and alizarin red staining. Altogether, the study showed that rGO coating improves Col scaffold properties and could be a promising implant for bone injuries.


2008 ◽  
Vol 87 (7) ◽  
pp. 606-616 ◽  
Author(s):  
C. E. Semino

In recent years, the development of new biomaterials with specifications for tissue and organ functional requirements—such as proper biological, structural, and biomechanical properties as well as designed control for biodegradation and therapeutic drug-release capacity—is the main aim of many academic and industrial programs. Hence, the concept of molecular self-assembly is the driving force for the development of new biomaterials that support the growth and functional differentiation of cells and tissues in a controlled manner. The discovery, properties, and development of self-assembling peptides to be used as three-dimensional (3D) scaffolds based on their similarity (in structure and mechanical features) to extracellular matrices are described. Self-assembling peptides can be used for in vitro applications for cell 3D culture as well as in vivo for tissue regeneration such as bone and optical nerve repair, as well as for drug delivery of mediators to improve therapy, as in the case of myocardial infarction. Finally, the use of self-assembling materials in combination with a bioengineering platform is proposed to assist functional bone regeneration in cases of larger bone defects, including exposed fractures due to trauma and spinal disorders dealing with high loadings, as well as replacement of big bone structures due to tumors.


2019 ◽  
Vol 108 (3) ◽  
pp. 412-425 ◽  
Author(s):  
Laurent Le Guéhennec ◽  
Dorien Van hede ◽  
Erwan Plougonven ◽  
Grégory Nolens ◽  
Bruno Verlée ◽  
...  

2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Misun Cha ◽  
Yuan-Zhe Jin ◽  
Jin Wook Park ◽  
Kyung Mee Lee ◽  
Shi Huan Han ◽  
...  

Abstract Background Critical bone defects remain challenges for clinicians, which cannot heal spontaneously and require medical intervention. Following the development of three-dimensional (3D) printing technology is widely used in bone tissue engineering for its outstanding customizability. The 3D printed scaffolds were usually accompanied with growth factors, such as bone morphometric protein 2 (BMP-2), whose effects have been widely investigated on bone regeneration. We previously fabricated and investigated the effect of a polylactic acid (PLA) cage/Biogel scaffold as a carrier of BMP-2. In this study, we furtherly investigated the effect of another shape of PLA cage/Biogel scaffold as a carrier of BMP-2 in a rat calvaria defect model and an ectopic ossification (EO) model. Method The PLA scaffold was printed with a basic commercial 3D printer, and the PLA scaffold was combined with gelatin and alginate-based Biogel and BMP-2 to induce bone regeneration. The experimental groups were divided into PLA scaffold, PLA scaffold with Biogel, PLA scaffold filled with BMP-2, and PLA scaffold with Biogel and BMP-2 and were tested both in vitro and in vivo. One-way ANOVA with Bonferroni post-hoc analysis was used to determine whether statistically significant difference exists between groups. Result The in vitro results showed the cage/Biogel scaffold released BMP-2 with an initial burst release and followed by a sustained slow-release pattern. The released BMP-2 maintained its osteoinductivity for at least 14 days. The in vivo results showed the cage/Biogel/BMP-2 group had the highest bone regeneration in the rat calvarial defect model and EO model. Especially, the bone regenerated more regularly in the EO model at the implanted sites, which indicated the cage/Biogel had an outstanding ability to control the shape of regenerated bone. Conclusion In conclusion, the 3D printed PLA cage/Biogel scaffold system was proved to be a proper carrier for BMP-2 that induced significant bone regeneration and induced bone formation following the designed shape.


2020 ◽  
Vol 11 ◽  
pp. 204173142096579
Author(s):  
Shichong Qiao ◽  
Dongle Wu ◽  
Zuhao Li ◽  
Yu Zhu ◽  
Fei Zhan ◽  
...  

Biomaterial with the dual-functions of bone regeneration and antibacterial is a novel therapy for infective bone defects. Three-dimensional (3D)-printed porous titanium (pTi) benefits bone ingrowth, but its microporous structure conducive to bacteria reproduction. Herein, a multifunctional hydrogel was prepared from dynamic supramolecular assembly of sodium tetraborate (Na2B4O7), polyvinyl alcohol (PVA), silver nanoparticles (AgNPs) and tetraethyl orthosilicate (TEOS), and composited with pTi as an implant system. The pTi scaffolds have ideal pore size and porosity matching with bone, while the supramolecular hydrogel endows pTi scaffolds with antibacterial and biological activity. In vitro assessments indicated the 3D composite implant was biocompatible, promoted bone marrow mesenchymal stem cells (BMSCs) proliferation and osteogenic differentiation, and inhibited bacteria, simultaneously. In vivo experiments further demonstrated that the implant showed effective antibacterial ability while promoting bone regeneration. Besides distal femur defect, the innovative scaffolds may also serve as an ideal biomaterial (e.g. dental implants) for other contaminated defects.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Xiangwei Liu ◽  
Naiwen Tan ◽  
Yuchao Zhou ◽  
Xueying Zhou ◽  
Hui Chen ◽  
...  

Adipose mesenchymal stem cells (ASCs) are considered as the promising seed cells for bone regeneration. However, the lower osteogenic differentiation capacity limits its therapeutic efficacy. Identification of the key molecules governing the differences between ASCs and BMSCs would shed light on manipulation of ASCs towards osteogenic phenotype. In this study, we screened semaphorin family members in ASCs and BMSCs and identified Sema3A as an osteogenic semaphorin that was significantly and predominantly expressed in BMSCs. The analyses in vitro showed that the overexpression of Sema3A in ASCs significantly enhanced the expression of bone-related genes and extracellular matrix calcium deposition, while decreasing the expression of adipose-related genes and thus lipid droplet formation, resembling a BMSCs phenotype. Furthermore, Sema3A modified ASCs were then engrafted into poly(lactic-co-glycolic acid) (PLGA) scaffolds to repair the critical-sized calvarial defects in rat model. As expected, Sema3A modified ASCs encapsulation significantly promoted new bone formation with higher bone volume fraction and bone mineral density. Additionally, Sema3A was found to simultaneously increase multiple Wnt related genes and thus activating Wnt pathway. Taken together, our study here identifies Sema3A as a critical gene for osteogenic phenotype and reveals that Sema3A-modified ASCs would serve as a promising candidate for bettering bone defect repair.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Lingling E ◽  
Rongjian Lu ◽  
Jianwei Sun ◽  
Hongbo Li ◽  
Wen Xu ◽  
...  

The microenvironment, or niche, regulates stem cell fate and improves differentiation efficiency. Human umbilical cord mesenchymal stem cells (hUC-MSCs) are ideal cell source for bone tissue engineering. However, the role of the microenvironments in hUC-MSC-based bone regeneration is not yet fully understood. This study is aimed at investigating the effects of the in vitro culture microenvironment (hUC-MSCs, nano-hydroxyapatite/collagen/poly (L-lactide) (nHAC/PLA), osteogenic media (OMD), and recombinant human bone morphogenetic protein-7 (rhBMP-7)) and the in vivo transplanted microenvironment (ectopic and orthotopic) on bone regeneration ability of hUC-MSCs. The isolated hUC-MSCs showed self-renewal potential and MSCs’ characteristics. In the in vitro two-dimensional culture microenvironment, OMD or OMD with rhBMP-7 significantly enhanced hUC-MSCs’ osteocalcin immunofluorescence staining, alkaline phosphatase, and Alizarin red staining; OMD with rhBMP-7 exhibited the highest ALP secretion and mineralized matrix formation. In the in vitro three-dimensional culture microenvironment, nHAC/PLA supported hUC-MSCs’ adhesion, proliferation, and differentiation; the microenvironment containing OMD or OMD and rhBMP-7 shortened cell proliferation progression and made osteogenic differentiation progression advance; rhBMP-7 significantly attenuated the inhibiting effect of OMD on hUC-MSCs’ proliferation and significantly enhanced the promoting effect of OMD on gene expression and protein secretion of osteogenic differentiation markers, calcium and phosphorous concentration, and mineralized matrix formation. The in vitro three-dimensional culture microenvironment containing OMD and rhBMP-7 induced hUC-MSCs to form the most new bones in ectopic or orthotopic microenvironment as proved by microcomputed tomography and hematoxylin and eosin staining, but bone formation in orthotopic microenvironment was significantly higher than that in ectopic microenvironment. The results indicated that the combination of in vitro hUC-MSCs+nHAC/PLA+OMD+rhBMP-7 microenvironment and in vivo orthotopic microenvironment provided a more optimized niche for bone regeneration of hUC-MSCs. This study elucidates that hUC-MSCs and their local microenvironment, or niche, play an important role in hUC-MSC-based bone regeneration. The endogenously produced BMP may serve an important regulatory role in the process.


Sign in / Sign up

Export Citation Format

Share Document