scholarly journals The combination of multi-functional ingredients-loaded hydrogels and three-dimensional printed porous titanium alloys for infective bone defect treatment

2020 ◽  
Vol 11 ◽  
pp. 204173142096579
Author(s):  
Shichong Qiao ◽  
Dongle Wu ◽  
Zuhao Li ◽  
Yu Zhu ◽  
Fei Zhan ◽  
...  

Biomaterial with the dual-functions of bone regeneration and antibacterial is a novel therapy for infective bone defects. Three-dimensional (3D)-printed porous titanium (pTi) benefits bone ingrowth, but its microporous structure conducive to bacteria reproduction. Herein, a multifunctional hydrogel was prepared from dynamic supramolecular assembly of sodium tetraborate (Na2B4O7), polyvinyl alcohol (PVA), silver nanoparticles (AgNPs) and tetraethyl orthosilicate (TEOS), and composited with pTi as an implant system. The pTi scaffolds have ideal pore size and porosity matching with bone, while the supramolecular hydrogel endows pTi scaffolds with antibacterial and biological activity. In vitro assessments indicated the 3D composite implant was biocompatible, promoted bone marrow mesenchymal stem cells (BMSCs) proliferation and osteogenic differentiation, and inhibited bacteria, simultaneously. In vivo experiments further demonstrated that the implant showed effective antibacterial ability while promoting bone regeneration. Besides distal femur defect, the innovative scaffolds may also serve as an ideal biomaterial (e.g. dental implants) for other contaminated defects.

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3207
Author(s):  
Kumaresan Sakthiabirami ◽  
Vaiyapuri Soundharrajan ◽  
Jin-Ho Kang ◽  
Yunzhi Peter Yang ◽  
Sang-Won Park

The design of zirconia-based scaffolds using conventional techniques for bone-regeneration applications has been studied extensively. Similar to dental applications, the use of three-dimensional (3D) zirconia-based ceramics for bone tissue engineering (BTE) has recently attracted considerable attention because of their high mechanical strength and biocompatibility. However, techniques to fabricate zirconia-based scaffolds for bone regeneration are in a stage of infancy. Hence, the biological activities of zirconia-based ceramics for bone-regeneration applications have not been fully investigated, in contrast to the well-established calcium phosphate-based ceramics for bone-regeneration applications. This paper outlines recent research developments and challenges concerning numerous three-dimensional (3D) zirconia-based scaffolds and reviews the associated fundamental fabrication techniques, key 3D fabrication developments and practical encounters to identify the optimal 3D fabrication technique for obtaining 3D zirconia-based scaffolds suitable for real-world applications. This review mainly summarized the articles that focused on in vitro and in vivo studies along with the fundamental mechanical characterizations on the 3D zirconia-based scaffolds.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3088
Author(s):  
Mariana Matias ◽  
Jacinta O. Pinho ◽  
Maria João Penetra ◽  
Gonçalo Campos ◽  
Catarina Pinto Reis ◽  
...  

Melanoma is recognized as the most dangerous type of skin cancer, with high mortality and resistance to currently used treatments. To overcome the limitations of the available therapeutic options, the discovery and development of new, more effective, and safer therapies is required. In this review, the different research steps involved in the process of antimelanoma drug evaluation and selection are explored, including information regarding in silico, in vitro, and in vivo experiments, as well as clinical trial phases. Details are given about the most used cell lines and assays to perform both two- and three-dimensional in vitro screening of drug candidates towards melanoma. For in vivo studies, murine models are, undoubtedly, the most widely used for assessing the therapeutic potential of new compounds and to study the underlying mechanisms of action. Here, the main melanoma murine models are described as well as other animal species. A section is dedicated to ongoing clinical studies, demonstrating the wide interest and successful efforts devoted to melanoma therapy, in particular at advanced stages of the disease, and a final section includes some considerations regarding approval for marketing by regulatory agencies. Overall, considerable commitment is being directed to the continuous development of optimized experimental models, important for the understanding of melanoma biology and for the evaluation and validation of novel therapeutic strategies.


Nanomaterials ◽  
2017 ◽  
Vol 7 (2) ◽  
pp. 46 ◽  
Author(s):  
Manabu Tanaka ◽  
Yoshinori Sato ◽  
Mei Zhang ◽  
Hisao Haniu ◽  
Masanori Okamoto ◽  
...  

Nanomedicine ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 273-288 ◽  
Author(s):  
Chun Liu ◽  
Yun Li ◽  
Zhijian Yang ◽  
Zhiyou Zhou ◽  
Zhihao Lou ◽  
...  

The effectiveness of mesenchymal stem cells (MSC) in the treatment of cartilage diseases has been demonstrated to be attributed to the paracrine mechanisms, especially the mediation of exosomes. But the exosomes derived from unsynchronized MSCs may be nonhomogeneous and the therapeutic effect varies between samples. Aim: To produce homogeneous and more effective exosomes for the regeneration of cartilage. Materials & methods: In this study we produced specific exosomes from bone marrow MSCs (BMSC) through kartogenin (KGN) preconditioning and investigated their performance in either in vitro or in vivo experiments. Results & conclusion: The exosomes derived from KGN-preconditioned BMSCs (KGN-BMSC-Exos) performed more effectively than the exosomes derived from BMSCs (BMSC-Exos). KGN preconditioning endowed BMSC-Exos with stronger chondral matrix formation and less degradation.


2020 ◽  
Vol 21 (24) ◽  
pp. 9722
Author(s):  
Nicolò Baranzini ◽  
Laura Pulze ◽  
Marcella Reguzzoni ◽  
Rossella Roncoroni ◽  
Viviana Teresa Orlandi ◽  
...  

Recent studies performed on the invertebrate model Hirudo verbana (medicinal leech) suggest that the T2 ribonucleic enzyme HvRNASET2 modulates the leech’s innate immune response, promoting microbial agglutination and supporting phagocytic cells recruitment in challenged tissues. Indeed, following injection of both lipoteichoic acid (LTA) and Staphylococcus aureus in the leech body wall, HvRNASET2 is expressed by leech type I granulocytes and induces bacterial aggregation to aid macrophage phagocytosis. Here, we investigate the HvRNASET2 antimicrobial role, in particular assessing the effects on the Gram-negative bacteria Escherichia coli. For this purpose, starting from the three-dimensional molecule reconstruction and in silico analyses, the antibacterial activity was evaluated both in vitro and in vivo. The changes induced in treated bacteria, such as agglutination and alteration in wall integrity, were observed by means of light, transmission and scanning electron microscopy. Moreover, immunogold, AMPs (antimicrobial peptides) and lipopolysaccharide (LPS) binding assays were carried out to evaluate HvRNASET2 interaction with the microbial envelopes and the ensuing ability to affect microbial viability. Finally, in vivo experiments confirmed that HvRNASET2 promotes a more rapid phagocytosis of bacterial aggregates by macrophages, representing a novel molecule for counteracting pathogen infections and developing alternative solutions to improve human health.


2007 ◽  
Vol 330-332 ◽  
pp. 967-970 ◽  
Author(s):  
B. Otsuki ◽  
Mitsuru Takemoto ◽  
Shunsuke Fujibayashi ◽  
Masashi Neo ◽  
Tadashi Kokubo ◽  
...  

A porous structure comprises pores and pore throats with a complex three-dimensional network structure, and many investigators have described the relationship between average pore size and the amount of bone ingrowth. However, the influence of network structure or pore throats for tissue ingrowth has rarely been discussed. Bioactive porous titanium implants with 48% porosity were analyzed using specific algorithms for three-dimensional analysis of interconnectivity based on a micro focus X-ray computed tomography system. In vivo histological analysis was performed using the very same implants implanted into the femoral condyles of male rabbits for 6 weeks. This matching study revealed that more poorly differentiated pores tended to have narrow pore throats, especially in their shorter routes to the outside. Data obtained suggest that this sort of novel analysis is useful for evaluating bone and tissue ingrowth into porous biomaterials.


2021 ◽  
Vol 7 (31) ◽  
pp. eabg3089
Author(s):  
Shixuan Chen ◽  
Hongjun Wang ◽  
Valerio Luca Mainardi ◽  
Giuseppe Talò ◽  
Alec McCarthy ◽  
...  

Biomaterials without exogenous cells or therapeutic agents often fail to achieve rapid endogenous bone regeneration with high quality. Here, we reported a class of three-dimensional (3D) nanofiber scaffolds with hierarchical structure and controlled alignment for effective endogenous cranial bone regeneration. 3D scaffolds consisting of radially aligned nanofibers guided and promoted the migration of bone marrow stem cells from the surrounding region to the center in vitro. These scaffolds showed the highest new bone volume, surface coverage, and mineral density among the tested groups in vivo. The regenerated bone exhibited a radially aligned fashion, closely recapitulating the scaffold’s architecture. The organic phase in regenerated bone showed an aligned, layered, and densely packed structure, while the inorganic mineral phase showed a uniform distribution with smaller pore size and an even distribution of stress upon the simulated compression. We expect that this study will inspire the design of next-generation biomaterials for effective endogenous bone regeneration with desired quality.


10.29007/rbgl ◽  
2019 ◽  
Author(s):  
Benjamin Hohlmann ◽  
Klaus Radermacher

Several orthopedic applications require a three-dimensional model of the bone. Ultrasound is a radiation-free and cheap alternative to the state-of-the-art imaging modalities if its limitations in terms of image quality and viewing range can be overcome. This work presents in-vitro as well as in-vivo experiments evaluating the IPASM search, a method for combined segmentation, registration as well as extrapolation. The algorithm is capable to reconstruct the distal surface of a phantom femur with an average surface distance error of roughly 1mm in case of in-vitro as well as below 2mm for in-vivo records, even if the shape varies strongly from the initial model.


2020 ◽  
Author(s):  
Zhai Hongfeng ◽  
Qiu Changhong ◽  
Jin Jun ◽  
Shao Xin

AbstractIn this article we investigated the preparation of tissue-engineered urethra by using the urethral epithelial subculture cells of male New Zealand young rabbits. We inoculated the epithelial cells of urinary mucosa of male New Zealand young rabbits on collagen, chitosan and collagen chitosan composite as scaffolds to prepare tissue-engineered urethra. The results of inverted phase contrast microscope, HE staining and scanning electron microscope of three kinds of tissue-engineered urethra were compared. What’s more, we reported a new method for quantitative and rapid detection of epithelial cell activity of urinary mucosa in situ by Interactive Laser Cytometer. The collagen chitosan composite was more similar to the extracellular matrix of mammalian. Its three-dimensional porous structure had a high area volume ratio, which was conducive to cell adhesion, growth and metabolism. In vitro, the urethral epithelial cells had been cultured on collagen chitosan composite, and the tissue-engineered urethra was successfully prepared, which laid a solid foundation for further in vivo experiments.


2008 ◽  
Vol 87 (7) ◽  
pp. 606-616 ◽  
Author(s):  
C. E. Semino

In recent years, the development of new biomaterials with specifications for tissue and organ functional requirements—such as proper biological, structural, and biomechanical properties as well as designed control for biodegradation and therapeutic drug-release capacity—is the main aim of many academic and industrial programs. Hence, the concept of molecular self-assembly is the driving force for the development of new biomaterials that support the growth and functional differentiation of cells and tissues in a controlled manner. The discovery, properties, and development of self-assembling peptides to be used as three-dimensional (3D) scaffolds based on their similarity (in structure and mechanical features) to extracellular matrices are described. Self-assembling peptides can be used for in vitro applications for cell 3D culture as well as in vivo for tissue regeneration such as bone and optical nerve repair, as well as for drug delivery of mediators to improve therapy, as in the case of myocardial infarction. Finally, the use of self-assembling materials in combination with a bioengineering platform is proposed to assist functional bone regeneration in cases of larger bone defects, including exposed fractures due to trauma and spinal disorders dealing with high loadings, as well as replacement of big bone structures due to tumors.


Sign in / Sign up

Export Citation Format

Share Document