scholarly journals SARS-CoV-2 antibody magnitude and detectability are driven by disease severity, timing, and assay

2021 ◽  
Vol 7 (31) ◽  
pp. eabh3409
Author(s):  
Michael J. Peluso ◽  
Saki Takahashi ◽  
Jill Hakim ◽  
J. Daniel Kelly ◽  
Leonel Torres ◽  
...  

Interpretation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serosurveillance studies is limited by poorly defined performance of antibody assays over time in individuals with different clinical presentations. We measured antibody responses in plasma samples from 128 individuals over 160 days using 14 assays. We found a consistent and strong effect of disease severity on antibody magnitude, driven by fever, cough, hospitalization, and oxygen requirement. Responses to spike protein versus nucleocapsid had consistently higher correlation with neutralization. Assays varied substantially in sensitivity during early convalescence and time to seroreversion. Variability was dramatic for individuals with mild infection, who had consistently lower antibody titers, with sensitivities at 6 months ranging from 33 to 98% for commercial assays. Thus, the ability to detect previous infection by SARS-CoV-2 is highly dependent on infection severity, timing, and the assay used. These findings have important implications for the design and interpretation of SARS-CoV-2 serosurveillance studies.

Author(s):  
Michael J. Peluso ◽  
Saki Takahashi ◽  
Jill Hakim ◽  
J. Daniel Kelly ◽  
Leonel Torres ◽  
...  

ABSTRACTSerosurveillance studies are critical for estimating SARS-CoV-2 transmission and immunity, but interpretation of results is currently limited by poorly defined variability in the performance of antibody assays to detect seroreactivity over time in individuals with different clinical presentations. We measured longitudinal antibody responses to SARS-CoV-2 in plasma samples from a diverse cohort of 128 individuals over 160 days using 14 binding and neutralization assays. For all assays, we found a consistent and strong effect of disease severity on antibody magnitude, with fever, cough, hospitalization, and oxygen requirement explaining much of this variation. We found that binding assays measuring responses to spike protein had consistently higher correlation with neutralization than those measuring responses to nucleocapsid, regardless of assay format and sample timing. However, assays varied substantially with respect to sensitivity during early convalescence and in time to seroreversion. Variations in sensitivity and durability were particularly dramatic for individuals with mild infection, who had consistently lower antibody titers and represent the majority of the infected population, with sensitivities often differing substantially from reported test characteristics (e.g., amongst commercial assays, sensitivity at 6 months ranged from 33% for ARCHITECT IgG to 98% for VITROS Total Ig). Thus, the ability to detect previous infection by SARS-CoV-2 is highly dependent on the severity of the initial infection, timing relative to infection, and the assay used. These findings have important implications for the design and interpretation of SARS-CoV-2 serosurveillance studies.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2831-2831
Author(s):  
Sebastian Kobold ◽  
Yanran Cao ◽  
Sinje Tams ◽  
Britta Marlen Bartels ◽  
Tim Lütkens ◽  
...  

Abstract Abstract 2831 Poster Board II-807 Its tumor-restricted expression and its high immunogenicity render cancer-testis (CT) antigen NY-ESO-1 an exquisite target for antigen-specific immunotherapies. Spontaneous antibody responses against NY-ESO-1 are typically found in a subset of patients with solid tumors. However, little is known regarding serological immune responses against NY-ESO-1 in patients with hematological malignancies including multiple myeloma (MM). Furthermore, no consequent longitudinal analyses have been performed correlating NY-ESO-1-specific antibody titers with the clinical development of the given malignancy. Finally, nothing is known regarding the functional capabilities of spontaneously occurring anti-NY-ESO-1 antibodies in MM or other malignancies. Here, we performed the first longitudinal and functional investigation of NY-ESO-1-specific antibody responses in MM analyzing 1100 sera and 200 bone marrow plasma samples of 194 MM patients. Sera and BM plasma samples of 100 healthy donors served as controls. Screening sera and bone marrow plasma of our MM patients by Enzyme-linked Immunosorbent Assay (ELISA) using full length recombinant NY-ESO-1 protein, we found that 5/194 patients had high-titered antibody responses against this CT antigen. A quantitative B cell ELISPOT demonstrated NY-ESO-1-specific B cells in the peripheral blood as well as in the bone marrow of the respective MM patients. In a western blot analysis, spontaneous NY-ESO-1-specific immune responses in the patients were found to be highly specific for both native and recombinant protein. Epitope mapping in an ELISA using 18 overlapping NY-ESO-1 20mer peptides showed that antibody responses were restricted to the first 70 amino acids of the full-length protein. NY-ESO-1-specific antibodies consisted mainly of IgG1 and to a lower extent of IgG3 subtypes. No IgG2, IgG4, IgM or IgA antibodies against NY-ESO-1 were detected. Interestingly, antibody affinity increased over the course of the disease suggesting an affinity driven antibody maturation. Accordingly, NY-ESO-1-specific antibodies of MM patients were found to be potent complement activators in a western blot technique. On the other hand, despite the high functional capabilities of NY-ESO-1-specific antibodies, antibody titers increased with each NY-ESO-1-expressing (as indicated by reverse-transcriptase-polymerase-chain-reaction and immunohistochemistry) recurrence of the disease. In conclusion, we demonstrate here the spontaneous occurrence of high-titered NY-ESO-1-specific antibodies in MM patients. One reason for the relatively low frequency of antibody responses against NY-ESO-1 might be that most patients were in early stages of the disease or in remission at the time the analysis was performed. Antibodies were produced by NY-ESO-1-specific B cells detectable in the bone marrow as well as in the peripheral blood of the patients. NY-ESO-1-specific antibodies were evoked by a distinct and immunodominant fragment of NY-ESO-1. Affinity maturation of this response and complement activation by the spontaneously occurring NY-ESO-1-specific IgG1-type antibodies speak in favour of an effective serological immune response. However, positive correlation of antibody titers with tumor burden and recurrence of the disease suggest an inability of antibodies targeting intracellular protein NY-ESO-1 to control the course of the disease, at least in the long run. Antigen-specific immunotherapy might be necessary to shape NY-ESO-1-specific immunity in MM patients and, particularly, to mobilize tumor-specific T cell responses. Disclosures: No relevant conflicts of interest to declare.


Viruses ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1390
Author(s):  
Anwar M. Hashem ◽  
Abdullah Algaissi ◽  
Sarah A. Almahboub ◽  
Mohamed A. Alfaleh ◽  
Turki S. Abujamel ◽  
...  

The Coronavirus Disease 2019 (COVID-19), caused by SARS-CoV-2, continues to spread globally with significantly high morbidity and mortality rates. Antigen-specific responses are of unquestionable value for clinical management of COVID-19 patients. Here, we investigated the kinetics of IgM, IgG against the spike (S) and nucleoproteins (N) proteins and their neutralizing capabilities in hospitalized COVID-19 patients with different disease presentations (i.e., mild, moderate or severe), need for intensive care units (ICU) admission or outcomes (i.e., survival vs death). We show that SARS-CoV-2 specific IgG, IgM and neutralizing antibodies (nAbs) were readily detectable in almost all COVID-19 patients with various clinical presentations. Interestingly, significantly higher levels of nAbs as well as anti-S1 and -N IgG and IgM antibodies were found in patients with more severe symptoms, patients requiring admission to ICU or those with fatal outcomes. More importantly, early after symptoms onset, we found that the levels of anti-N antibodies correlated strongly with disease severity. Collectively, these findings provide new insights into the kinetics of antibody responses in COVID-19 patients with different disease severity.


2009 ◽  
Vol 16 (3) ◽  
pp. 366-371 ◽  
Author(s):  
Peter D. Burbelo ◽  
Yo Hoshino ◽  
Hannah Leahy ◽  
Tammy Krogmann ◽  
Ronald L. Hornung ◽  
...  

ABSTRACT Highly quantitative and high-throughput serological tests for evaluation of humoral responses to herpes simplex virus 1 (HSV-1) and HSV-2 are not available. The efficacy of luciferase immunoprecipitation system (LIPS) assays for antibody profiling and serologic diagnosis of HSV-1 and HSV-2 infection was investigated using a panel of five recombinant HSV antigens. Plasma samples from subjects seropositive for HSV-1 and/or HSV-2 or seronegative for HSV-1 and HSV-2 that had previously been analyzed by Western blotting and the Focus Plexus immunoassay were evaluated. The LIPS test measuring anti-gG1 antibody titers was 96% sensitive and 96% specific for detecting HSV-1 infection, compared with the Focus immunoassay, and was 92% sensitive and 96% specific, compared with Western blotting. The results for the anti-gG2 LIPS test for HSV-2 precisely matched those for Western blotting, with 100% sensitivity and 100% specificity, and showed robust antibody titers in all the HSV-2-infected samples that were over 1,000 times higher than those in HSV-2-negative or HSV-1-positive samples. Antibodies to three additional HSV-2 proteins, gB, gD, and ICP8, were detected in many of the HSV-1- and/or HSV-2-infected plasma samples and showed preferentially higher immunoreactivity in HSV-2-infected plasma. The titers of antibodies to these three HSV-2 antigens also significantly correlated with each other (R = 0.75 to 0.81; P < 0.0001). These studies indicate that the robust anti-gG1 and anti-gG2 antibody responses detected by LIPS assays are useful for HSV-1 and HSV-2 detection and suggest that profiling of antibody responses to a panel of HSV proteins may be useful for characterizing individual humoral responses to infection and for monitoring responses to vaccines.


2021 ◽  
Author(s):  
Judith Kannenberg ◽  
Carolin Schnurra ◽  
Nina Reiners ◽  
Reinhard Henschler ◽  
Raymund Buhmann ◽  
...  

SARS-CoV-2-specific IgM antibodies wane during the first three months after infection and IgG antibody levels decline. This may limit the ability of antibody tests to identify previous SARS CoV-2 infection at later time points. To examine if the sensitivity of antibody tests falls off, we compared the sensitivity of two nucleoprotein-based antibody tests, the Roche Elecsis II Anti-SARS-CoV-2 and the Abbott SARS-CoV-2 IgG assay and three glycoprotein-based tests, the Abbott SARS-CoV-2 IgG II Quant, Siemens Atellica IM COV2T and Euroimmun SARS-CoV-2 assay with 56 sera obtained 6-8 months after SARS-CoV-2 infection. The sensitivity of the Roche, Abbott SARS-CoV-2 IgG II Quant and Siemens antibody assays was 94.6 % (95% confidence interval (CI) 85.1-98.9 %), 98.2 % (95% CI: 90.4-99.9 %) and 100 % (95% CI: 93.6-100 %). The sensitivity of the N-based Abbott SARS-CoV-2 IgG and the glycoprotein-based Euroimmun ELISA was 48.2 % (95% CI: 34.7-62.0 %) and 83.9 % (95% CI: 71.7-92.4 %). The nucleoprotein-based Roche and the glycoprotein-based Abbott RBD and Siemens tests were more sensitive than the N-based Abbott and the Euroimmun antibody tests (p=0.0001 to p=0.039). The N-based Abbott antibody test was less sensitive 6-8 months than 4-10 weeks after SARS-CoV-2 infection (p = 0.0002). The findings show that most SARS CoV-2 antibody assays correctly identified previous infection 6-8 months after infection. The sensitivity of pan-Ig antibody tests was not reduced at 6-8 months when IgM antibodies have usually disappeared. However, one of the nucleoprotein-based antibody tests significantly lost sensitivity over time.


2021 ◽  
Author(s):  
Dominik Menges ◽  
Kyra D Zens ◽  
Tala Ballouz ◽  
Nicole Caduff ◽  
Daniel Llanas-Cornejo ◽  
...  

To better understand the development of immunity against SARS-CoV-2 over time, we evaluated humoral and cellular responses a population-based cohort of SARS-CoV-2-infected individuals covering the full spectrum of COVID-19 up to 217 days after diagnosis. We characterized anti-Spike (S)-IgA and -IgG antibody responses in 431 individuals and found that about 85% develop and maintain anti-S-IgG responses over time. In a subsample of 64 participants selected for a detailed characterization of immune responses, we additionally evaluated anti-Nucleocapsid (N)-IgG antibodies and T cell responses specific to viral Membrane (M), N, and S proteins. Most participants had detectable T cell responses to at least one of the four peptide pools analyzed, which were more frequent than antibody seropositivity. We found a moderate correlation between antibody and T cell responses, which declined over time and suggests important variability in response patterns between individuals. The heterogeneity of immune trajectories was further analyzed using cluster analyses taking into account joint antibody and T cell responses over time. We identified five distinct immune trajectory patterns, which were characterized by specific antibody, T cell and T cell subset patterns along with disease severity and demographic factors. Higher age, male sex, higher disease severity and being a non-smoker was significantly associated with stronger immune responses. Overall, the results highlight that there is a consistent and maintained antibody response among most SARS-CoV-2-infected individuals, while T cell responses appear to be more heterogenous but potentially compensatory among those with low antibody responses.


2021 ◽  
Vol 15 (2) ◽  
pp. e0009165
Author(s):  
Jason Rosado ◽  
Michael T. White ◽  
Rhea J. Longley ◽  
Marcus Lacerda ◽  
Wuelton Monteiro ◽  
...  

Background Antibody responses as serological markers of Plasmodium vivax infection have been shown to correlate with exposure, but little is known about the other factors that affect antibody responses in naturally infected people from endemic settings. To address this question, we studied IgG responses to novel serological exposure markers (SEMs) of P. vivax in three settings with different transmission intensity. Methodology We validated a panel of 34 SEMs in a Peruvian cohort with up to three years’ longitudinal follow-up using a multiplex platform and compared results to data from cohorts in Thailand and Brazil. Linear regression models were used to characterize the association between antibody responses and age, the number of detected blood-stage infections during follow-up, and time since previous infection. Receiver Operating Characteristic (ROC) analysis was used to test the performance of SEMs to identify P. vivax infections in the previous 9 months. Principal findings Antibody titers were associated with age, the number of blood-stage infections, and time since previous P. vivax infection in all three study sites. The association between antibody titers and time since previous P. vivax infection was stronger in the low transmission settings of Thailand and Brazil compared to the higher transmission setting in Peru. Of the SEMs tested, antibody responses to RBP2b had the highest performance for classifying recent exposure in all sites, with area under the ROC curve (AUC) = 0.83 in Thailand, AUC = 0.79 in Brazil, and AUC = 0.68 in Peru. Conclusions In low transmission settings, P. vivax SEMs can accurately identify individuals with recent blood-stage infections. In higher transmission settings, the accuracy of this approach diminishes substantially. We recommend using P. vivax SEMs in low transmission settings pursuing malaria elimination, but they are likely to be less effective in high transmission settings focused on malaria control.


2021 ◽  
Author(s):  
Kahina Saker ◽  
Vanessa Escuret ◽  
Virginie Pitiot ◽  
Amélie Massardier-Pilonchéry ◽  
Stéphane Paul ◽  
...  

AbstractWith the availability of vaccines, commercial assays detecting anti-SARS-CoV-2 antibodies (Ab) evolved towards quantitative assays directed to the spike glycoprotein or its receptor binding domain (RBD). The main objective of the present study was to compare the Ab titers obtained with quantitative commercial binding Ab assays, after 1 dose (convalescent individuals) or 2 doses (naive individuals) of vaccine, in healthcare workers (HCW).Antibody titers were measured in 263 sera (from 150 HCW) with 5 quantitative immunoassays (Abbott RBD IgG II quant, bioMerieux RBD IgG, DiaSorin Trimeric spike IgG, Siemens Healthineers RBD IgG, Wantai RBD IgG). One qualitative total antibody anti RBD detection assay (Wantai) was used to detect previous infection before vaccination. The results are presented in binding Ab units (BAU)/mL after application, when possible, of a conversion factor provided by the manufacturers and established from a World Health Organization (WHO) internal standard.There was a 100% seroconversion with all assays evaluated after two doses of vaccine. With assays allowing BAU/ml correction, Ab titers were correlated (ρ= 0.84-0.99). However, a significant difference between values persisted. The titer differences varied by a mean 3.04% between Siemens and bioMerieux assays to 50.54% between Siemens and DiaSorin assays.Titer harmonization is still to be improved despite better results were obtained between assays detecting the same Ab against the same antigen. The next step towards a true standardization of the assays would be to include the International Standard in the calibration of each assays to express the results in IU/mL.


Author(s):  
Kahina Saker ◽  
Vanessa Escuret ◽  
Virginie Pitiot ◽  
Amélie Massardier-Pilonchéry ◽  
Stéphane Paul ◽  
...  

With the availability of vaccines, commercial assays detecting anti-SARS-CoV-2 antibodies (Ab) evolved towards quantitative assays directed to the spike glycoprotein or its receptor binding domain (RBD). The main objective of the present study was to compare the Ab titers obtained with quantitative commercial binding Ab assays, after 1 dose (convalescent individuals) or 2 doses (naïve individuals) of vaccine, in healthcare workers (HCW). Antibody titers were measured in 255 sera (from 150 HCW) with 5 quantitative immunoassays (Abbott RBD IgG II quant, bioMérieux RBD IgG, DiaSorin Trimeric spike IgG, Siemens Healthineers RBD IgG, Wantai RBD IgG). One qualitative total antibody anti RBD detection assay (Wantai) was used to detect previous infection before vaccination. The results are presented in binding Ab units (BAU)/mL after application, when possible, of a conversion factor provided by the manufacturers and established from a World Health Organization (WHO) internal standard. There was a 100% seroconversion with all assays evaluated after two doses of vaccine. With assays allowing BAU/ml correction, Ab titers were correlated (Pearson correlation coefficient, ρ, range: 0.85-0.94). The titer differences varied by a mean of 10.6% between Siemens and bioMérieux assays to 60.9% between Abbott and DiaSorin assays. These results underline the importance of BAU conversion for the comparison of Ab titer obtained with the different quantitative assays. However, significant differences persist, notably, between kits detecting Ab against the different antigens. A true standardization of the assays would be to include the International Standard in the calibration of each assays to express the results in IU/mL


Sign in / Sign up

Export Citation Format

Share Document